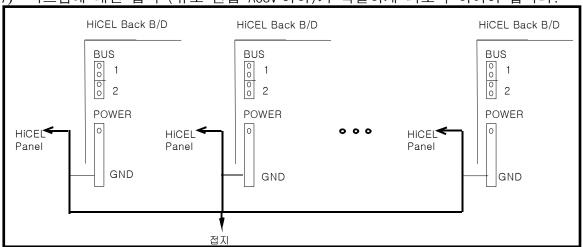
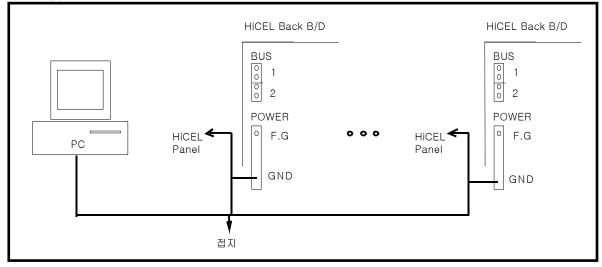
| 1. | 설치 전 주의사항                                                    | 3-1         |    |
|----|--------------------------------------------------------------|-------------|----|
| 2. | HiCEL 개요                                                     | 3-3         |    |
| 3. | HiCEL 구성도                                                    | 3-4         |    |
| 4. | HiCEL 모듈별 설명                                                 | 3-5         |    |
| 5. | 제품 모델 구성5.1 HiCEL(Ver 2.3) 모델 구성<br>5.2 HiCEL(Ver 3.0) 모델 구성 | 3-7         |    |
| 6. | 설치 방법                                                        | 3-9<br>3-10 | 3- |
|    | 6.2.2 통신 보드 (COM B/D Ver. 3.0)                               |             | 3- |
|    | 6.2.3 중앙 연산 제어 보드 (CPU B/D Ver. 2.3)<br>15                   |             | 3- |
|    | 6.2.4 중앙 연산 제어 보드 (CPU B/D Ver. 3.0)<br>17                   |             | 3- |
|    | 6.2.5 아날로그 입력 보드 (AI B/D)                                    |             | 3- |
|    | 20<br>6.2.6 아날로그 출력 보드 (AO B/D (4 CH))                       |             | 3- |
|    | 22<br>6.2.7 아날로그 출력 보드 (AO B/D (8 CH))                       |             | 3- |
|    | 24<br>6.2.8 디지털 입력 보드 (DI B/D (8CH))                         |             | 3- |
|    | 26<br>6.2.9 디지털 입력 보드 (DI B/D (12CH))                        |             | 3- |
|    | 28<br>6.2.10 디지털 출력 보드 (DO B/D )                             |             | 3- |
|    | 30<br>6.2.11 적산 입력 보드 (TOT B/D )32                           |             | 3- |

i

# 목 차


|    | 6.2.12  | 2 RS-485 B/D       | - 3-33 |
|----|---------|--------------------|--------|
|    | 6.3 결선  | 방법                 | - 3-35 |
|    | 6.3.1   | 통신 신호              | - 3-35 |
|    | 6.3.2   | 아날로그 입력 (AI)       | - 3-36 |
|    | 6.3.3   | 아날로그 출력 (AO (4CH)) | - 3-37 |
|    | 6.3.4   | 아날로그 출력 (AO (8CH)) | - 3-38 |
|    | 6.3.5   | 디지털 입력 (DI (8CH))  | - 3-39 |
|    | 6.3.6   | 디지털 입력 (DI (12CH)) | - 3-40 |
|    | 6.3.7   | 디지털 출력 (DO)        | - 3-41 |
|    | 6.3.8   | 적산 입력 (TOT)        |        |
|    | 6.3.9   | AC 24V 출력          | - 3-43 |
|    | 6.4 PPT | 연결 방법              | - 3-43 |
|    | 6.5 POT | 연결 방법              | - 3–44 |
| 7. | 유지 보수   | 우 및 서비스            | 3-44   |
| 8. | 보드 및    | 전원 사양              | 3-45   |
| 9. | 케이블 시   | 나양                 | 3-47   |

- 1) 설치 전에는 반드시 설치 설명서를 자세하게 읽어야 합니다.
- 2) 향후 필요시를 고려하여 설명서를 잘 보관하여 주십시요.
- 3) 모든 설치는 이 설명서에 설명되어 있는 방법에 준하여 실시 하여야 합니다.
- 4) 시스템을 청소할 경우 반드시 전원 플러그를 뽑아 놓은 상태에서 실시하여야 하며 액체 클리너를 사용하지 말고 부드러운 솔을 사용하여 먼지를 제거하여야 합니다.
- 5) 입력되는 전원의 사양이 올바른가 확인 하여야 합니다.
- 6) 전원은 반드시 UPS를 설치 사용해야 합니다.


#### \*\*\* 주의 \*\*\*

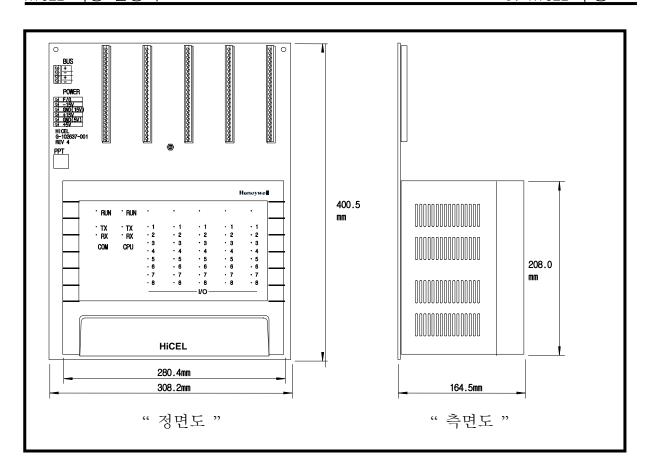
HiCEL 의 POWER SUPPLY 는 AC 100/220V 겸용이므로 전원 LINE 결선시 입력 전원을 반드시 확인 바랍니다.

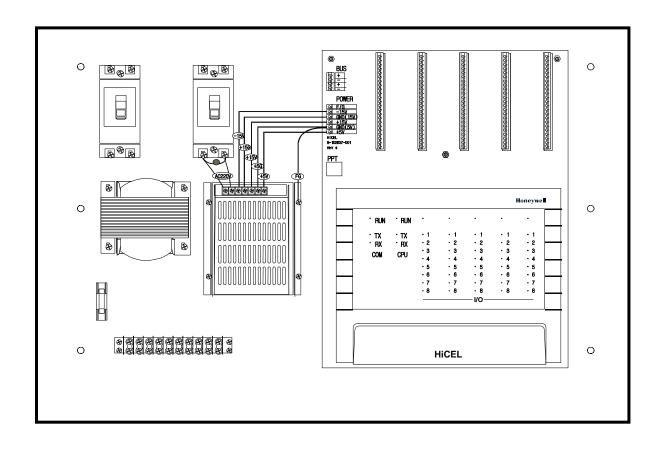
7) 시스템에 대한 접지 (유도 전압 AC3V 이하)가 확실하게 되도록 하여야 합니다.



7) 중앙 감시반용 컴퓨터와 각각의 DDC 들 간에 GROUND가 일치되어 있는가를 확인하십시오.




- 8) 규정된 부속물 이외의 것을 부착하지 말아야 합니다.
- 9) 습기가 많은 곳에는 설치하지 말아야 합니다.
- 10) 환기가 잘되는 곳에 설치하여야 합니다.
- 11) 시스템이 연결되어 있는 출력 단자(OUTLET)에 과부하가 걸리지 않도록 하여야 합니다.
- 12) 시스템 내부에 이물질이나 물기가 들어가지 않도록 하여야 합니다.
- 13) 사용자가 시스템 수리를 시도하지 않도록 하여야 합니다.
- 14) 다음과 같은 경우가 발생시에는 반드시 전원 플러그를 뽑아놓고, A/S 요청을 하여야 합니다.
  - 시스템 전원 장치에 불이 들어오지 않거나 모든 LED가 점등 되지 않을 때.
  - 물기나 이물질이 시스템 내부에 들어가 정상 동작을 하지 않을 때.
  - 시스템이 물에 젖어서 정상 동작을 하지 않을 때.
  - 사용 설명서대로 동작이 되지 않을 때.
  - 시스템을 떨어뜨렸을 때.(동작이 되지 않는 경우)
- 15) 상기 주의사항을 지키지 않아 발생되는 하자는 사용자가 책임을 지게 됩니다.


HiCEL 은 국내 빌딩 자동제어 현장에 적합하도록 설계된 직접 디지털 제어기 (DDC)로서 각종 입출력의 구성을 자유롭게 할 수 있으며 , 비교적 사용하기 쉬운 제어 프로그램의 사용으로 현장에서 즉시 제작/변경 조치가 가능 합니다.

따라서, 현장 상황에 따라 정확하고 신속한 조치가 가능하며, 72시간 이상의 배터리 백업 기능을 보유하고 있어 정전 시에도 일정 시간 동안 데이터가 보호 됩니다.

- BATTERY에 의해 보호되는 정보
  - 관제점(실관제점/파라미터/글로벌)의 형태 및 값
  - DDC 프로그램(GBSL) 및 그 실행 상태
  - TIME PROGRAM 및 그 실행 상태
  - GDR POINT

DDC의 입출력 구성은 DDC당 최대 40 포인트(S/C 2.3 : 40 Point, S/C 3.0 : 48 Point) 내에서 동일 종류의 관제점을 최대로 32 포인트까지 구성이 가능 합니다.(단, 적산전력계는 최대 4 포인트까지 구성이 가능) 그러나, 파라미터 포인트는 64X64 까지 포인트 수용이 가능하고, DDC 간의 글로벌 포인트는 32 개까지 사용 가능합니다. 또한, 최대 16 대(VER 2.3 은 9 대)의 DDC(DDC#9는 GDR I/F 전용 DDC 이므로 BASIC UNIT 만으로 구성됨)가 네트웍을 형성하여 중앙 감시반과 함께 운용될 수 있는 제어기입니다.





HiCEL 의 구성 요소는 크게 기본 유니트, 입출력 모듈 및 AO 출력용 전원으로 나눌수 있습니다.

### 4.1 기본 유니트 (BASIC UNIT)

HiCEL 의 기본구성 요소로서 중앙제어 보드(CPU B/D), 통신 보드(COM B/D), 전원 공급장치로 구성되어 있으며 OS 응용 S/W 및 통신 등의 기능을 제공합니다.

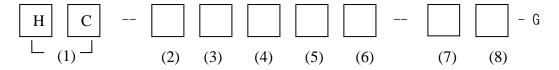
1/0 터미널 단자가 부착된 기본 보드상의 8개의 SLOT이 장착된 Backboard에 필요에따라 다양하게 입출력 보드를 설치 가능하게 되어 있읍니다.

## 4.2 입출력 모듈

입출력 모듈는 총 7종류이며 기본 UNIT상의 빈 SLOT에 장착할 수 있도록 되어 있습니다. DDC 한대 당 장착할 수 있는 입출력 모듈의 최대 수량은 5 개이며, 같은 종류의 보드는 최대 4 대까지만 허용합니다. (단, 적산입력(TOT) 보드는 1 개, Digital Input(12CH) 보드는 최대 2개만 가능합니다.)

#### ♦ 입출력 종류

| 구 분     | 기호  | 특 징                   | 비고                      |
|---------|-----|-----------------------|-------------------------|
| 디지털 입력  | DI  | 무전압 접점                |                         |
|         |     | ( 내전압 DC 30V )        |                         |
| 디지털 출력  | D0  |                       | S/W로 타입조정               |
| ● 지속형   |     | 릴레이 접점 NO,NC 접점       |                         |
| ● 순간형   |     | 무전압 접점 출력             |                         |
|         |     |                       | 온도센서                    |
| 아날로그 입력 |     | PT 100 ( 2-WIRE )     | -50℃~150℃, 0℃: 100Ω     |
| ● 저 항   |     | PT 1000,              | -50℃~150℃, 0℃: 1000Ω    |
|         |     | PT 3000,              | -30°C~100°C, 0°C: 3000Ω |
|         |     | BALC0500              | -50℃~150℃, 23℃: 500Ω    |
| ● 전 류   | ΑI  | 4 - 20 mA             | 차압/정압 TRANS             |
|         |     | (499Ω, DIP 스위치설정)     | CO <sub>2</sub> 센서      |
|         |     |                       | 습도 센서                   |
|         |     | 0 - 1V DC ,           | 습도 센서                   |
| ● 전 압   |     | 0 - 10V DC,           |                         |
|         |     | 2 - 10V DC.           |                         |
| 아날로그 출력 | AO  | 2 - 10V DC, Max 10 mA |                         |
| 적산 입력   | TOT | 무전압 접점 펄스 입력          |                         |


#### 4.3 AO 출력용 전원

아날로그 출력용 전원 공급은 별도의 트랜스를 장착하여 각종 모니터 및 엑츄에이터 들을 동작하도록 전원을 지원하며, 사용되는 부하는 300VA로 되어 있습니다.

# 4.4 콘트롤러 버스 ( S1-BUS )

콘트롤러 버스는 16개(Ver2.3은 9개)의 HiCEL 이 Smart Central 과 이루어지는 통신 버스를 말하며, 서로 PEER - TO - PEER 네트웍으로 이루어져 있습니다. 최대 통신 거리는 1.2Km 이고, 기본 속도는 9600 bps 입니다.

# 5.1 HICEL (Ver. 2.3) 모델 구성



◆ (1)BASIC UNIT

; With T/R : 44-13746 Without T/R : 44-14391

◆ (2)~(6) 1/0 Board Code

| Code | ID-NO.   | ID-NO. 구성내역   |        |
|------|----------|---------------|--------|
| 0    | 음        | 애             |        |
| 1    | 44-13709 | DO B/D ASS'Y  | 최대 4 개 |
| 2    | 44-13707 | DI B/D ASS'Y  | 최대 4 개 |
| 3    | 44-13705 | AO B/D ASS'Y  | 최대 4 개 |
| 4    | 44-13703 | AI B/D ASS'Y  | 최대 4 개 |
| 5    | 44-13711 | TOT B/D ASS'Y | 최대 1 개 |

◈ (7) 전원사양

| Code | 내 역     |  |
|------|---------|--|
| 1    | AC 110V |  |
| 2    | AC 220V |  |

◆ (8) Transformer

| Code | 도번           | 내 역        |
|------|--------------|------------|
| 0    | 없음           | 없          |
| 1    | 10910001-303 | 300 VA 1EA |

- ► (2)~(6)까지의 코드는 반드시 작은 숫자가 좌측으로 기입됨. (단, "0"은 없음을 의미하며 항상 다른 숫자가 기입된 후 나머지 칸을 채운다.)
- ▶ 같은 숫자가 존재 할 경우 연이어서 기입한다.

# 5.2 HiCEL(Ver. 3.0) 모델 구성

◈ (1) BASIC UNIT 구성(CPU B/D, COM B/D, BACK B/D, CASE)

; With T/R : 44 - 17965 Without T/R: 44 - 17964

♦ (2) Revision

| 선택코드 | 내 용       |
|------|-----------|
| 3    | HiCEL 3.0 |

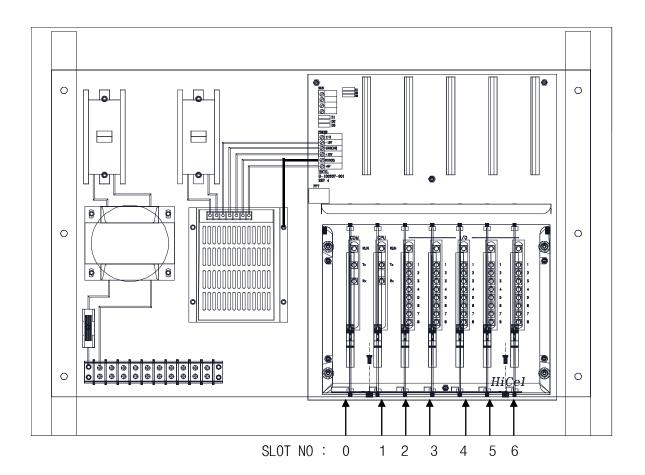
◆ (3) ~ (7) I/O Board Code

| (-) (-) |                  |          |  |  |
|---------|------------------|----------|--|--|
| 선택코드    | 구 성 내 역          | ID-NO.   |  |  |
| 0       | 없음               |          |  |  |
| 1       | DO B/D ASS'Y     | 44-13709 |  |  |
| 2       | DI B/D ASS'Y     | 44-13707 |  |  |
| 3       | AO B/D ASS'Y     | 44-13705 |  |  |
| 4       | AI B/D ASS'Y     | 44-17927 |  |  |
| 5       | TOT B/D ASS'Y    | 44-13711 |  |  |
| 6       | DI(12) B/D ASS'Y | 44-17908 |  |  |
| 7       | AO(4) B/D ASS'Y  | 44-17912 |  |  |

### ◈ (8) 전원사양

| 선택코드 | 구 성 내 역 | 1 |
|------|---------|---|
| 1    | 220V AC |   |

#### ♦ (9) Transformer


| 선택코드 | 구 성 내 역   | 도 번          |
|------|-----------|--------------|
| 0    | 아<br>없    | _            |
| 1    | 300VA 1EA | 10910001-303 |

< NOTE > \* (3) ~ (7) 까지의 코드는 반드시 DO,DI,AO,AI,TOT 순으로 기입됨. (단, "0"은 없음을 의미하며 항상 다른 숫자가 기입된후 마지막으로 기입한다.)

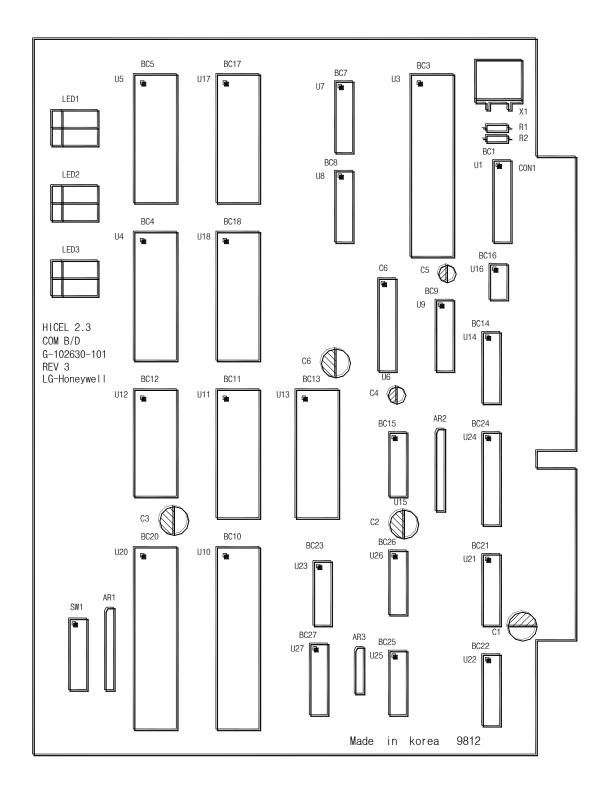
\* 같은 숫자가 존재 할 경우 연이어서 기입한다.

#### 6.1 설치 순서

아래의 그림은 HiCEL의 B/D 장착 SLOT을 나타낸 것입니다.



HiCEL의 보드 구성은 기본 보드와 입출력 B/D의 조합으로 이루어 지는데 기본 보드는 반드시 장착되어야 하나, 입출력 보드는 필요에 따라 장착 여부 및 수량을 조정할 수 있습니다.


| SLOT 번호 | 보드종류    | 비고     |
|---------|---------|--------|
| 0       | COM B/D | 기본 보드  |
| 1       | CPU B/D | 기본 보드  |
| 2 ~ 6   | I/O B/D | 입출력 보드 |

(SLOT 의 번호는 그림의 왼쪽 에서 부터 0,1,2,3,4,5,6)

또한, <u>각 보드들은 장착하기 전에 보드별 딥 스위치를 설정</u>하여야 하고,입출력 보드는 <u>AI,AO,TOT,DI,DO 순서로 Slot 에 장착</u>하여야 합니다.각 B/D 별 딥 스위치 설정 방법은 다음과 같습니다.

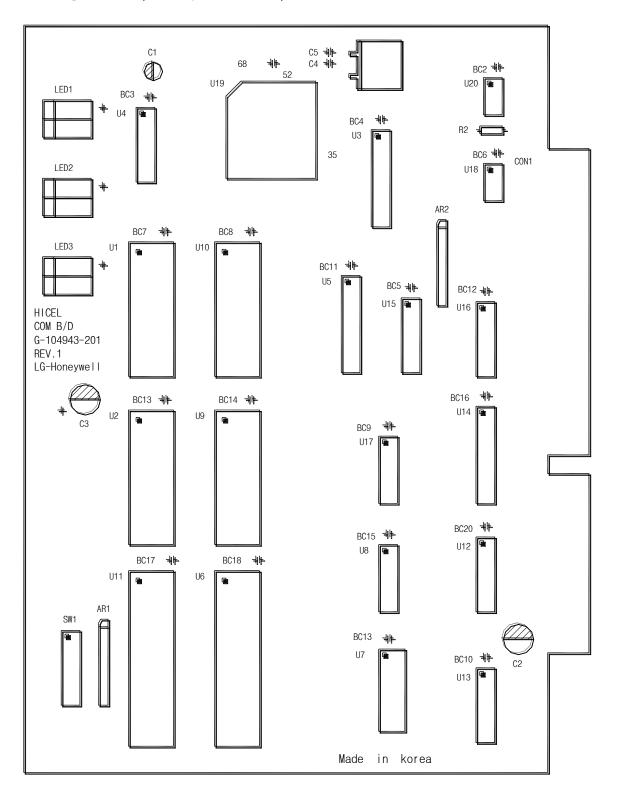
## 6.2 보드별 딥 스위치 설정 방법

6.2.1. 통신 보드 ( COM B/D Ver. 2.3 )



위의 그림에서 딥 스위치 위치는 SW1 입니다.

딥 스위치 번호 1 2 3 4 5 6 7 8 DDC 번호 통신 속도 (CCMS)


|   | SW 1 |   |   | DDC 번호 |
|---|------|---|---|--------|
| 1 | 2    | 3 | 4 |        |
| Χ | 0    | 0 | 0 | 1번 DDC |
| 0 | Χ    | 0 | 0 | 2번 DDC |
| Χ | Χ    | 0 | 0 | 3번 DDC |
| 0 | 0    | Χ | 0 | 4번 DDC |
| Χ | 0    | Χ | 0 | 5번 DDC |
| 0 | Χ    | Χ | 0 | 6번 DDC |
| Χ | Χ    | Χ | 0 | 7번 DDC |
| 0 | 0    | 0 | Χ | 8번 DDC |

|   | SW | 1 |   | 통신 속도              |
|---|----|---|---|--------------------|
| 5 | 6  | 7 | 8 |                    |
| Χ | Χ  | 0 | 0 | 9600 bps (Default) |
| Χ | Χ  | 0 | Χ | 4800 bps           |
| Χ | Χ  | Χ | 0 | 2400 bps           |
| Χ | Χ  | Χ | Χ | 1200 bps           |

O(S/W "ON") X(S/W "OFF")

주) CPU B/D에 POWER가 공급되지 않을때 배터리가 방전되어 1.35Vdc(72시간경과시) 이하가 되면 배터리 재충전이 불가능하니 이때는 배터리를 교체하여야 함.

#### 6.2.2 통신 보드 ( COM B/D Ver. 3.0 )



위의 그림에서 딥 스위치 위치는 SW1 입니다

<< 지역난방 2.3용 >>

딥 스위치의 설정 방법은 아래의 표를 참조 하십시요.

딥 스위치 번호

1 2 3 4 5 6 7 8

DDC 번호

통신 속도 (CCMS)

|   |   | SW | 1 |   |   | DDC No.    |
|---|---|----|---|---|---|------------|
| 1 | 2 | 3  | 4 | 5 | 6 |            |
| Χ | 0 | 0  | 0 | 0 | 0 | DDC No. 1  |
| 0 | Χ | 0  | 0 | 0 | 0 | DDC No. 2  |
| Χ | Χ | 0  | 0 | 0 | 0 | DDC No. 3  |
| 0 | 0 | Χ  | 0 | 0 | 0 | DDC No. 4  |
| Χ | 0 | Χ  | 0 | 0 | 0 | DDC No. 5  |
| 0 | Χ | Χ  | 0 | 0 | 0 | DDC No. 6  |
| Χ | Χ | Χ  | 0 | 0 | 0 | DDC No. 7  |
| 0 | 0 | 0  | Χ | 0 | 0 | DDC No. 8  |
| Χ | 0 | 0  | Χ | 0 | 0 | DDC No. 9  |
|   |   |    |   |   |   | (GDR,고정)   |
| 0 | Χ | 0  | Χ | 0 | 0 | DDC No. 10 |
| Χ | Χ | 0  | Χ | 0 | 0 | DDC No. 11 |
| 0 | 0 | Χ  | Χ | 0 | 0 | DDC No. 12 |
| Χ | 0 | Χ  | Χ | 0 | 0 | DDC No. 13 |
| 0 | Χ | Χ  | Χ | 0 | 0 | DDC No. 14 |
| Χ | Χ | Χ  | Χ | 0 | 0 | DDC No. 15 |
| 0 | 0 | 0  | 0 | Χ | 0 | DDC No. 16 |

 SW 1

 7
 8

 X
 X

 X
 0

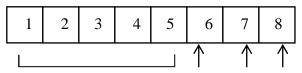
 4800 bps

 0
 0

 X
 9600 bps (Default)

O(S/W "ON") X(S/W "OFF")

<u>주의</u> : 통신 상태 체크


1. Tx와 Rx LED 가

지속적으로 빠르게 점멸(발진)하면 S1-bus 통신에러임

- (1) error 발생시 체크사항
  - 시스템 Ground 일치여부
  - 통신 Line
  - 통신 IC (U18:75176)
  - S1-Bus 극성
  - Power / 통신 Cable 분리상태

<< S/C 3.0 (Or BCU) 용 >>

딥 스위치 번호



DDC 번호

BCU Slave 통신속도(CCMS)

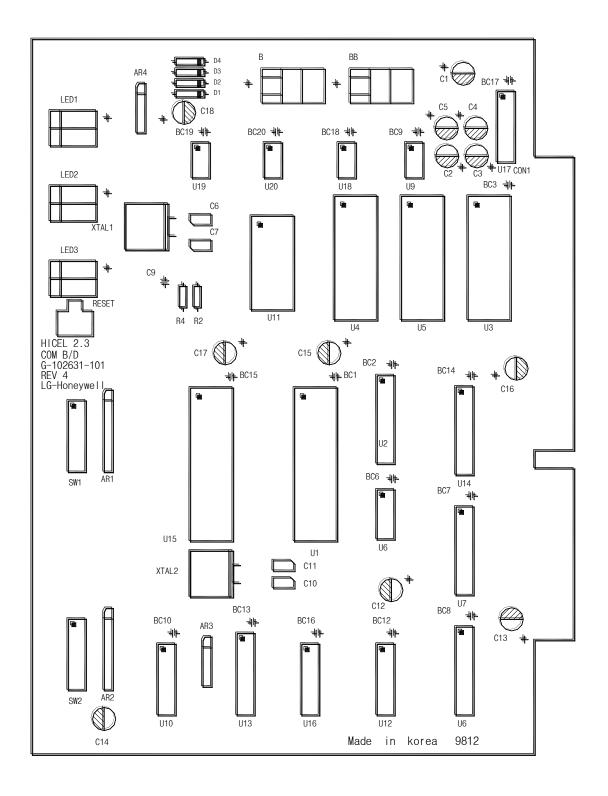
|   |   |      |   |   | _          |
|---|---|------|---|---|------------|
|   |   | SW 1 |   |   | DDC No.    |
| 1 | 2 | 3    | 4 | 5 |            |
| Х | 0 | 0    | 0 | 0 | DDC No. 1  |
| 0 | Χ | 0    | 0 | 0 | DDC No. 2  |
| Χ | Χ | 0    | 0 | 0 | DDC No. 3  |
| 0 | 0 | Χ    | 0 | 0 | DDC No. 4  |
| Х | 0 | Χ    | 0 | 0 | DDC No. 5  |
| 0 | Χ | Χ    | 0 | 0 | DDC No. 6  |
| Χ | Χ | Χ    | 0 | 0 | DDC No. 7  |
| 0 | 0 | 0    | Χ | 0 | DDC No. 8  |
| Х | 0 | 0    | Χ | 0 | DDC No. 9  |
|   |   |      |   |   | (GDR,고정)   |
| 0 | Χ | 0    | Χ | 0 | DDC No. 10 |
| Х | Χ | 0    | Χ | 0 | DDC No. 11 |
| 0 | 0 | Χ    | Χ | 0 | DDC No. 12 |
| 0 | Χ | Χ    | Χ | 0 | DDC No. 14 |
| Х | Χ | Χ    | Χ | 0 | DDC No. 15 |
| 0 | 0 | 0    | 0 | Χ | DDC No. 16 |

BCU/Slave Check

| SV | V1 | 연결 상태                    |  |  |  |  |  |
|----|----|--------------------------|--|--|--|--|--|
| 6  | 7  |                          |  |  |  |  |  |
| Χ  | Χ  | BCU 없음,Slave 없음(Default) |  |  |  |  |  |
| 0  | Χ  | BCU 있음,Slave 없음          |  |  |  |  |  |
| Χ  | 0  | BCU 없음,Slave 있음          |  |  |  |  |  |
| 0  | 0  | BCU 있음 Slave 있음          |  |  |  |  |  |

| SW1 | 통신 속도             |
|-----|-------------------|
| 8   |                   |
| Χ   | 9600bps (Default) |

주의 : 통신 상태 체크


1. Tx와 Rx LED 가

지속적으로 빠르게 점멸(발진)하면 S1-bus 통신에러임

- (1) error 발생시 체크사항
  - 시스템 Ground 일치여부
  - 통신 Line
  - 통신 IC(U18:75176)
  - S1-Bus 극성
  - Power / 통신 Cable 분리상태

O(S/W "ON") X(S/W "OFF")

#### 6.2.3 중앙 연산 제어 보드 (CPU B/D Ver. 2.3)



위의 그림에서 딥 스위치의 위치는 SW1 과 SW2 입니다.

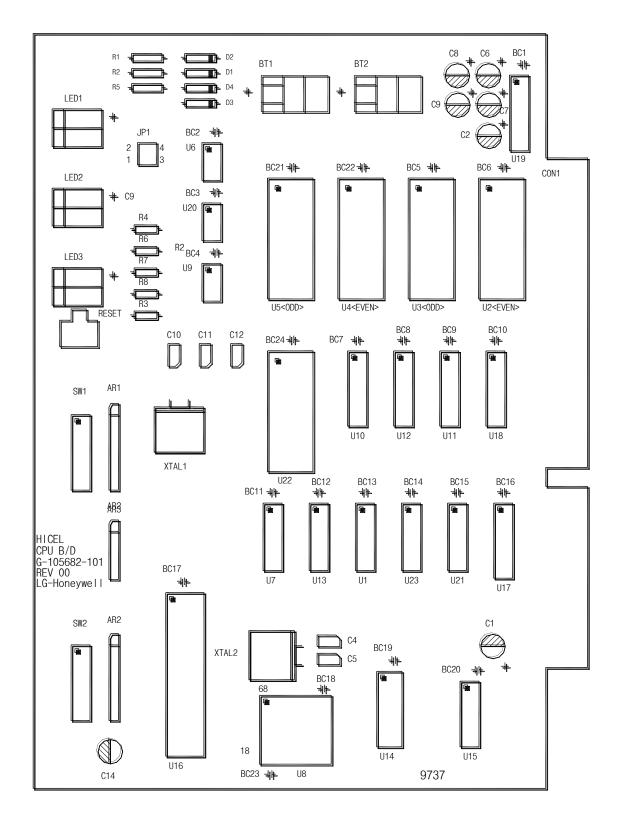
CPU B/D의 딥 스위치 구성은 아래의 표와 같습니다.

| 딥 스위치 (SW2)번호 |   |   |   |   |   | 딥 | 스우 | ]치 ( | SW1) | 번호 |   |   |   |   |   |
|---------------|---|---|---|---|---|---|----|------|------|----|---|---|---|---|---|
| 1             | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 1    | 2    | 3  | 4 | 5 | 6 | 7 | 8 |

 AI 보드수
 DI 보드수
 AO 보드수
 DO 보드수
 통신속도(POT/PPT)

|   | SW2 |   |          |  |  |  |  |  |
|---|-----|---|----------|--|--|--|--|--|
|   |     |   |          |  |  |  |  |  |
| 1 | 2   | 3 | 보드<br>수량 |  |  |  |  |  |
| 0 | 0   | 0 | 0        |  |  |  |  |  |
| Χ | 0   | 0 | 1        |  |  |  |  |  |
| 0 | Χ   | 0 | 2        |  |  |  |  |  |
| Χ | Χ   | 0 | 3        |  |  |  |  |  |
| 0 | 0   | Χ | 4        |  |  |  |  |  |

|   | SW2 |   |         |  |  |  |  |  |
|---|-----|---|---------|--|--|--|--|--|
|   |     |   |         |  |  |  |  |  |
| 4 | 5   | 6 | 소<br>수량 |  |  |  |  |  |
| 0 | 0   | 0 | 0       |  |  |  |  |  |
| Χ | 0   | 0 | 1       |  |  |  |  |  |
| 0 | Χ   | 0 | 2       |  |  |  |  |  |
| Χ | Χ   | 0 | 3       |  |  |  |  |  |
| 0 | 0   | Χ | 4       |  |  |  |  |  |


| SV | V2 | SW1 | AO |  |
|----|----|-----|----|--|
|    |    |     | 보드 |  |
| 7  | 8  | 1   | 수량 |  |
| 0  | 0  | 0   | 0  |  |
| Χ  | 0  | 0   | 1  |  |
| 0  | Χ  | 0   | 2  |  |
| Χ  | Χ  | 0   | 3  |  |
| 0  | 0  | Χ   | 4  |  |

|   | SW1   |   |   |  |  |  |  |  |
|---|-------|---|---|--|--|--|--|--|
|   |       |   |   |  |  |  |  |  |
| 2 | 2 3 4 |   |   |  |  |  |  |  |
| 0 | 0     | 0 | 0 |  |  |  |  |  |
| Χ | 0     | 0 | 1 |  |  |  |  |  |
| 0 | Χ     | 0 | 2 |  |  |  |  |  |
| Χ | Χ     | 0 | 3 |  |  |  |  |  |
| 0 | 0     | Χ | 4 |  |  |  |  |  |

|   | SV | V1 |   | POT/PPT<br>통신 속도   |
|---|----|----|---|--------------------|
| 5 | 6  | 7  | 8 | 36 12              |
| Χ | 0  | 0  | 0 | 2400 bps (Default) |

O(S/W "ON") X(S/W "OFF")

#### 6.2.4 중앙 연산 제어 보드 (CPU B/D Ver. 3.0)



위의 그림에서 딥 스위치의 위치는 SW1 과 SW2 입니다.

CPU B/D의 딥 스위치 구성은 아래의 표와 같습니다.

| 딥 스위치 (SW2)번호         |   |   |   |   |   | 딥 스위치 (SW1)번호 |         |                 |            |  |      |      |           |
|-----------------------|---|---|---|---|---|---------------|---------|-----------------|------------|--|------|------|-----------|
| 1                     | 2 | 3 | 4 | 5 | 6 | 7             | 8       | 1 2 3 4 5 6 7 8 |            |  |      |      | 8         |
| L AI 보드수 DI 보드수 AO 보드 |   |   |   |   |   | <br><br>三수    | L<br>DO | ・보드             | <br><br>:수 |  | 틀산 속 | · 고속 | <br>(POT) |

| S | SW 2 | AI<br>보드 |    |
|---|------|----------|----|
| 1 | 2    | 3        | 수량 |
| 0 | 0    | 0        | 0  |
| Χ | 0    | 0        | 1  |
| 0 | Χ    | 0        | 2  |
| Χ | Χ    | 0        | 3  |
| 0 | 0    | Χ        | 4  |

|   | SW | DI<br>보드 |    |
|---|----|----------|----|
| 4 | 5  | 6        | 수량 |
| 0 | 0  | 0        | 0  |
| Χ | 0  | 0        | 1  |
| 0 | Χ  | 0        | 2  |
| Χ | Χ  | 0        | 3  |
| 0 | 0  | Χ        | 4  |

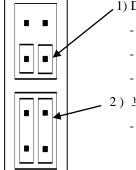
| SW 2 |   | SW 1 | AO<br>B/D |  |
|------|---|------|-----------|--|
| 7    | 8 | 1    | 수량        |  |
| 0    | 0 | 0    | 0         |  |
| Χ    | 0 | 0    | 1         |  |
| 0    | Χ | 0    | 2         |  |
| Χ    | Χ | 0    | 3         |  |
| 0    | 0 | Χ    | 4         |  |

| S | SW 1 | DO<br>B/D |    |
|---|------|-----------|----|
| 2 | 3    | 4         | 수량 |
| 0 | 0    | 0         | 0  |
| Χ | 0    | 0         | 1  |
| 0 | Χ    | 0         | 2  |
| Χ | Χ    | 0         | 3  |
| 0 | 0    | Χ         | 4  |

O(S/W "ON") X(S/W "OFF")

SW 1 통신 속도 (POT) 5 8 6 Χ Χ Χ Χ 2400 bps(Default) Χ Χ Χ 4800 bps Χ Χ Χ 0 9600 bps Χ Χ 0 0 19200 bps

\* AO(4),DI(12) B/D의 사용에 대한 사항은 6.2.6 , 6.2.9참조


\* DB CLEAR : CPU B/D 메모리에 저장된 모든 Data를 지우는 기능

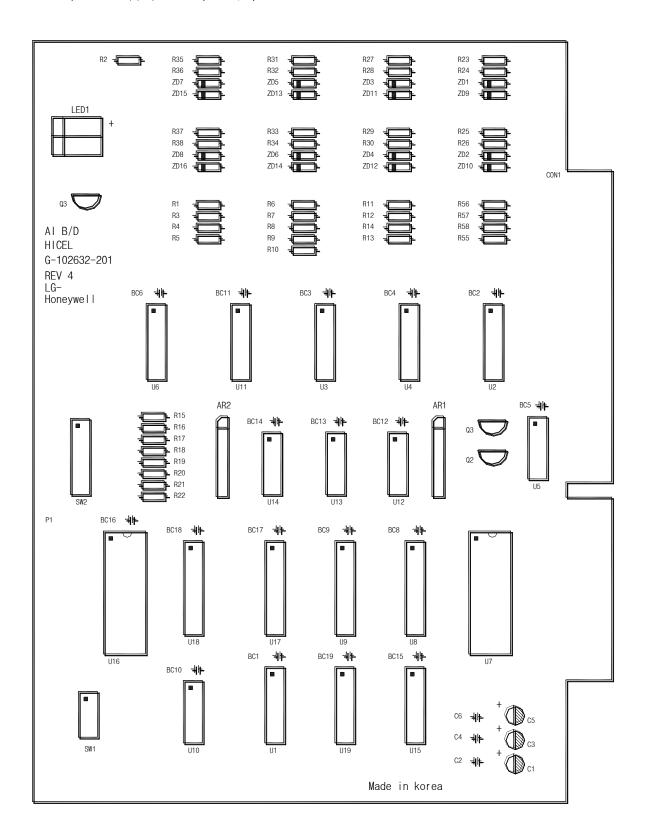
DB CLEAR

0

#### 주의사항:

## 1. Jumper 연결




, 1) Default(보관,운반용)로 셋팅상태

- 보드를 사용안할 때 방법
- 배터리 충,방전 안됨
- 메모리 data 보존안됨
- 2) 보드 정상 운용시 방법
  - Data Backup 기능이
  - 필요할때의 방법 - 배터리 충.방전 됨

#### 2. DB Clear

- 1) SW-1 5 번과 6 번 단자를 "ON"에 놓은후 "RESET"버튼을 누른다. (CPU B/D RUN LED 가 빠르게 점멸한다.)
- 2) SW-1 5 번과 6 번 단자를 "OFF"에 놓은후 "RESET" 버튼을 누른다.
- 3. 사용되는 입/출력 보드의 수를 SW1 과 SW2 에서 셋팅할 것.

#### 6.2.5 아날로그 입력 보드 (AI B/D)



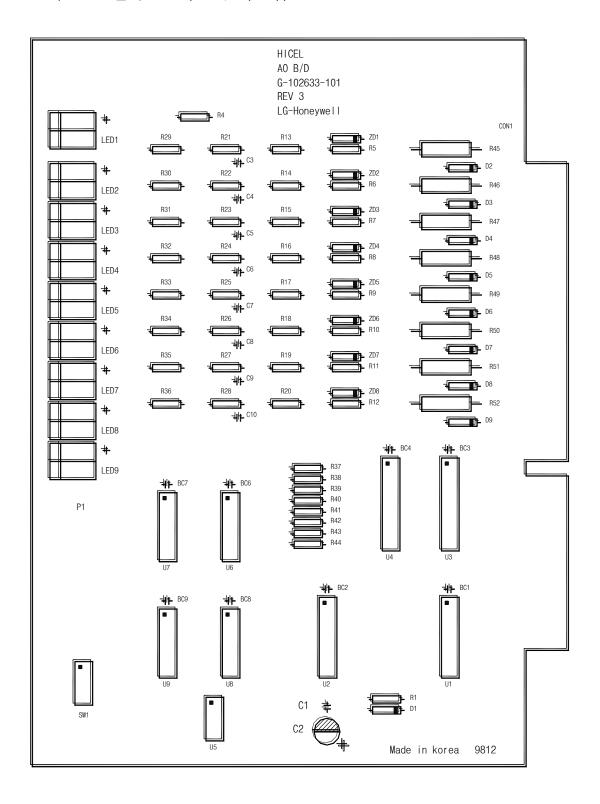
위의 그림에서 딥 스위치의 위치는 SW1 과 SW2 입니다.

| 1 2 3 4 1 2 3 4 5 6 7 8 | 1 | 딥 스 | 딥 스위치(SW1)번호 |   |   | 딥 스위치 (SW2)번호 |   |   |   |   |   |   |   |   |
|-------------------------|---|-----|--------------|---|---|---------------|---|---|---|---|---|---|---|---|
|                         |   | 1   | 2            | 3 | 4 |               | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

전류 입력 채널

|   | ΑI |   |   |    |
|---|----|---|---|----|
|   | SW | 1 |   | 보드 |
| 1 | 2  | 3 | 4 | 번호 |
| 0 | Χ  | Χ | Χ | 1  |
| Χ | 0  | Χ | Χ | 2  |
| Χ | Χ  | 0 | Χ | 3  |
| Χ | Χ  | Χ | 0 | 4  |

O(S/W "ON") X(S/W "OFF")


SW2 는 해당 채널의 입력이 전류 인가의 여부를 나타내는 딥 스위치로써 전류 입력의 경우에만 딥 스위치를 ON 위치에 놓습니다.

예를 들면 3, 5, 6번이 전류 입력일 경우의 딥 스위치 설정 방법은 아래와 같습니다.

|   |   |   | SW | 72 |   |   |   |
|---|---|---|----|----|---|---|---|
| 1 | 2 | 3 | 4  | 5  | 6 | 7 | 8 |
| Χ | Χ | 0 | Χ  | 0  | 0 | Χ | Χ |

O(S/W "ON") X(S/W "OFF")

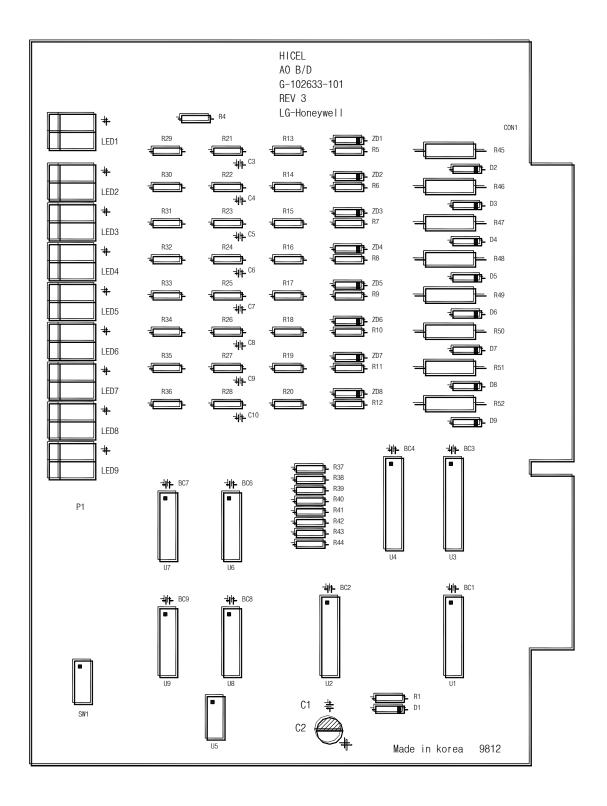
#### 6.2.6 아날로그 출력 보드 (AO B/D (4CH))



위의 그림에서 딥 스위치의 위치는 SW1 입니다.

|   | SW | 1 |   |
|---|----|---|---|
| 1 | 2  | 3 | 4 |
| 1 |    |   | 1 |

B/D No.


|   | AO<br>B/D |   |   |     |
|---|-----------|---|---|-----|
| 1 | 2         | 3 | 4 | No. |
| 0 | Χ         | Χ | Χ | 1   |
| Χ | 0         | Χ | Χ | 2   |
| Χ | Χ         | 0 | Χ | 3   |
| Χ | Χ         | Χ | 0 | 4   |

O(S/W "ON") X(S/W "OFF")

# <u>주의사항</u>

- 1. 각 Point 단자대에 24 V AC 가 공급됨.
- 2. H(Hot) 와 N(Neutral) 의 혼돈 주의.

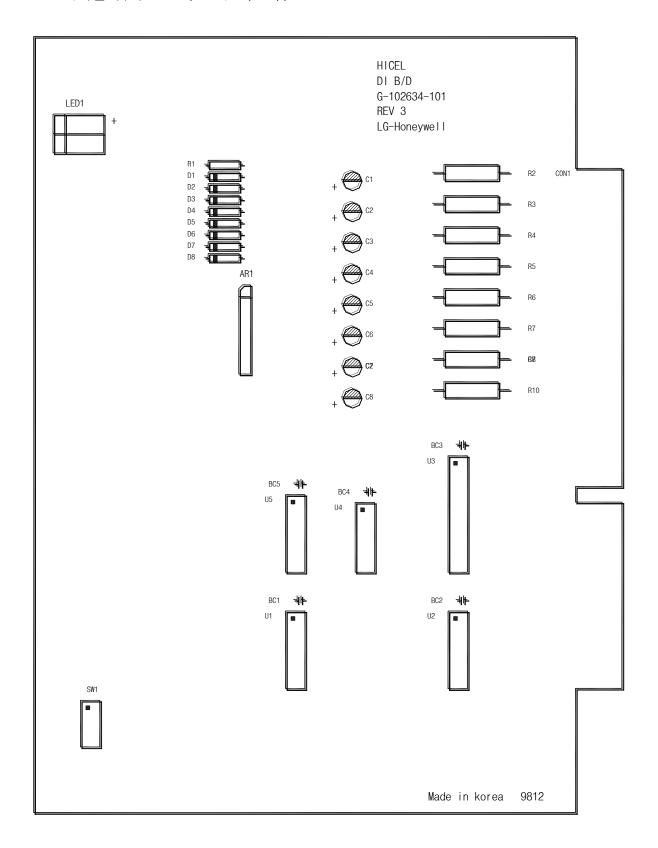
#### 6.2.7 아날로그 출력 보드 (AO B/D (8CH))



위의 그림에서 딥 스위치의 위치는 SW1 입니다.

| SW1 |   |   |   |  |  |  |
|-----|---|---|---|--|--|--|
| 1   | 2 | 3 | 4 |  |  |  |
|     |   |   |   |  |  |  |

B/D No.


|   | SW | <b>'</b> 1 | AI B/D<br>No. |   |
|---|----|------------|---------------|---|
| 1 | 2  | 3          | 4             |   |
| 0 | Χ  | Χ          | Χ             | 1 |
| Χ | 0  | Χ          | Χ             | 2 |
| Χ | Χ  | 0          | Χ             | 3 |
| Χ | Χ  | Χ          | 0             | 4 |

O(S/W "ON") X(S/W "OFF")

# <u>주의사항</u>

- 1. 각 Point 단자대에 24 V AC 가 공급됨.
- 2. H(Hot) 와 N(Neutral) 의 혼돈 주의.

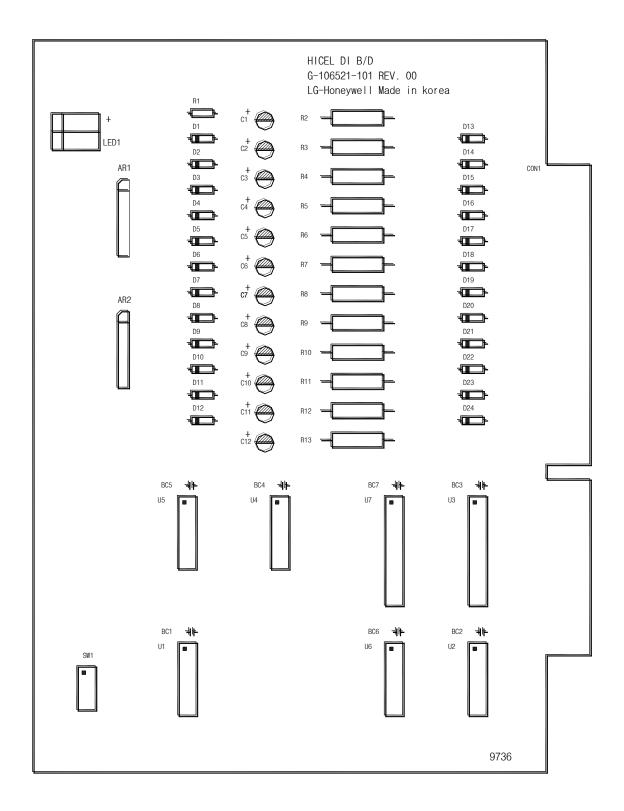
## 6.2.8 디지털 입력 보드 (DI B/D (8CH))



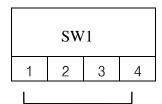
위의 그림에서 딥 스위치의 위치는 SW1 입니다.

| SW1 |   |   |   |  |  |
|-----|---|---|---|--|--|
| 1   | 2 | 3 | 4 |  |  |
| 1   |   |   | 1 |  |  |

B/D No.


|   | SW | DI<br>B/D |   |     |
|---|----|-----------|---|-----|
| 1 | 2  | 3         | 4 | No. |
| 0 | Χ  | Χ         | Χ | 1   |
| Χ | 0  | Χ         | Χ | 2   |
| Χ | Χ  | 0         | Χ | 3   |
| Χ | Χ  | Χ         | 0 | 4   |

O(S/W "ON") X(S/W "OFF")


# <u>주의사항</u>

- 1. 전압노이즈 AC 3V 이하 요구됨
  - -필요시 입력 터미널 전단에 릴레이 ( DC 24V 구동 Relay ) 사용.
  - -유도발생시 DI Noise Filter 사용할것 .
- 2. 전원선과 입력 신호 케이블 분리 요구됨.

#### 6.2.9 디지털 입력 보드 (DI B/D (12CH))



위의 그림에서 딥 스위치의 위치는 SW1 입니다.



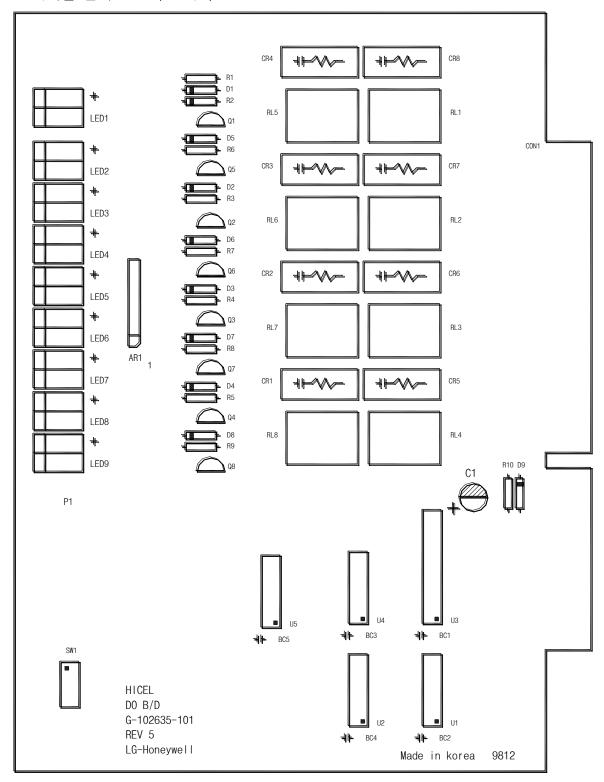
O(S/W "ON") X(S/W "OFF")

B/D No.

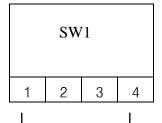
< DI(12) 와 DI(8)를 함께 사용시 정보>

| SW 1 |   |   |   | 관제점          |
|------|---|---|---|--------------|
| 1    | 2 | 3 | 4 | 번호           |
| 0    | Χ | Χ | Χ | 1-8          |
| Χ    | 0 | Χ | Χ | 9–12         |
| Χ    | Χ | 0 | Χ | 17-24        |
| Χ    | Χ | Χ | 0 | 25-28        |
| 0    | 0 | Χ | Χ | 1-8, 9-12    |
| 0    | Χ | Χ | 0 | 1-8, 25-28   |
| Х    | 0 | 0 | Χ | 9-12, 17-24  |
| Χ    | Χ | 0 | 0 | 17-24, 25-28 |

|      | B/D 혼 |       |                                  |
|------|-------|-------|----------------------------------|
| 12PT | 8PT   | 관제점 수 |                                  |
| N/A  | 1     | 8     |                                  |
| N/A  | 2     | 16    |                                  |
| N/A  | 3     | 24    |                                  |
| N/A  | 4     | 32    |                                  |
| 1    | N/A   | 12    |                                  |
| 1    | 1     | 20    | DI(12)와 DI(8)의 B/D<br>번호는 달라야한다. |
| 1    | 2     | 28    | · 인조는 현대학인데.                     |
| 2    | N/A   | 24    |                                  |


예) 1 개의 DI(12) B/D 와 2 개의 DI(8)가 사용될 때

- DI(12) Dip S/W 1 &2 번으로 설정하면
   DI(8) 은 3&4 번으로 설정되어야 한다.
- 설정된 관제점 : 1~12PT, 17-32PT (총 28 관제점)


# 주의사항

- 1. 전압노이즈 AC 3V 이하 요구됨
  - -필요시 입력 터미널 전단에 릴레이 ( DC 24V 구동 Relay ) 사용할것.
  - -유도발생시 DI Noise Filter 사용하것.
- 2. 전원선과 입력 신호 케이블 분리 요구됨.

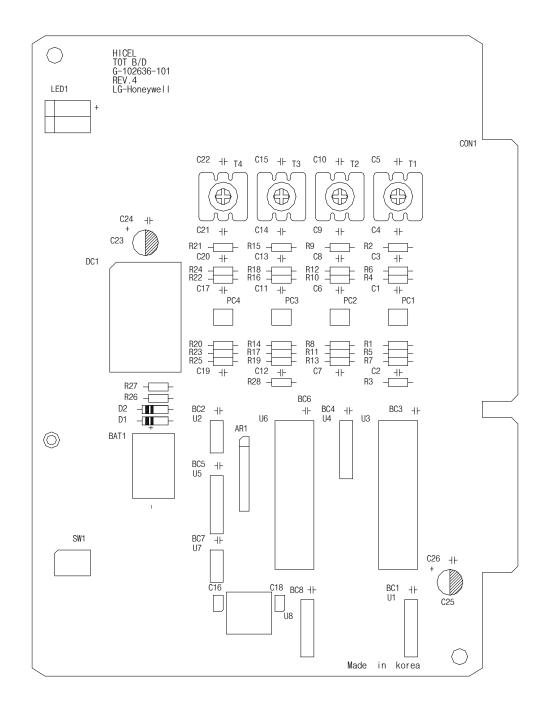
#### 6.2.10 디지털 출력 보드 (DO B/D)



위의 그림에서 딥 스위치의 위치는 SW1 입니다.



B/D No.

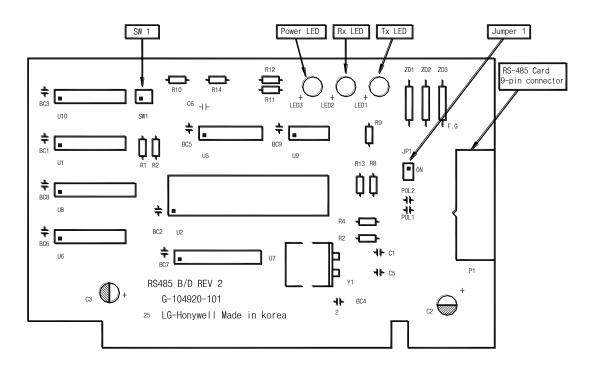

| SW1 |   |   |   | DO B/D<br>No. |
|-----|---|---|---|---------------|
| 1   | 2 | 3 | 4 |               |
| 0   | Χ | Χ | Χ | 1             |
| Χ   | 0 | Χ | Χ | 2             |
| Χ   | Χ | 0 | Χ | 3             |
| Χ   | Χ | Χ | 0 | 4             |

O(S/W "ON") X(S/W "OFF")

# <u>주의사항</u>

- 1. 사용되는 MCC에 Timer 가 사용되면 Spark Killer(CR ARRAY)의 연결을 제거할것.
- 2. 현장의 MCC 또는 Motor 의 부하용량에 따라 일부 기기가 CR Array의 용량과 맞지 않을 수 있음.
- 3. 필요시 외장형 Relay(DC 24V 구동용 Relay) 을 사용할것.

#### 6.2.11 적산 입력 보드 (TOT B/D)




위의 그림에서 딥 스위치의 위치는 SW1 입니다.

#### 주의사항:


- 1. 입력 센서 케이블의 노이즈 전압이 AC 3V 이하요구됨
  - 필요시 DI Noise Filter 사용할것

#### 6.2.12 RS-485 보드 (Ver 3.0)



#### 1. DIP 스위치 설정방법

① SW1 (Default)



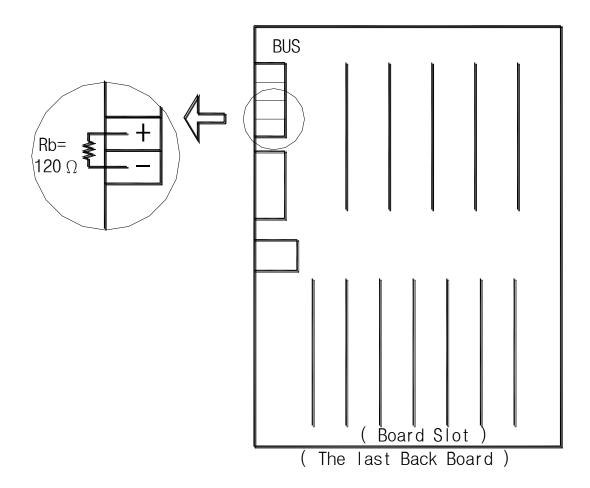
- ② JP1
  - 종단저항이 연결안된 경우 : 스위치 "OFF" (Default)



- 종단저항이 연결된 경우

: 스위치 "ON"



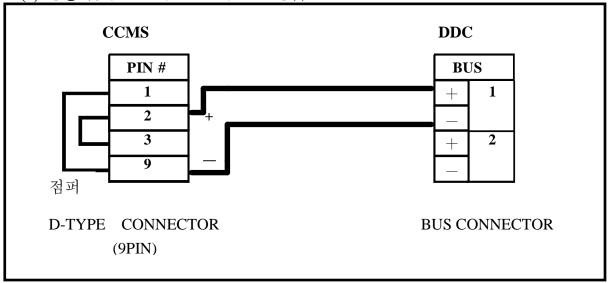

## 주의사항

- 1. RS-485 CARD 는 COM2 로 고정되어 있음 따라서 다음단계를 따라야 한다.
  - PC CMOS Setup 모드에서 COM2 Disable
  - PC 를 끄고 RS-485 Card 를 PC 마더 보드 Slot 에 장착하고 PC 를 재 Booting 한다.
- 2. 485 Card 와 PC 간 시스템 그라운드 일치여부 확인.
- 3. Power 와 DO Cable 분리.

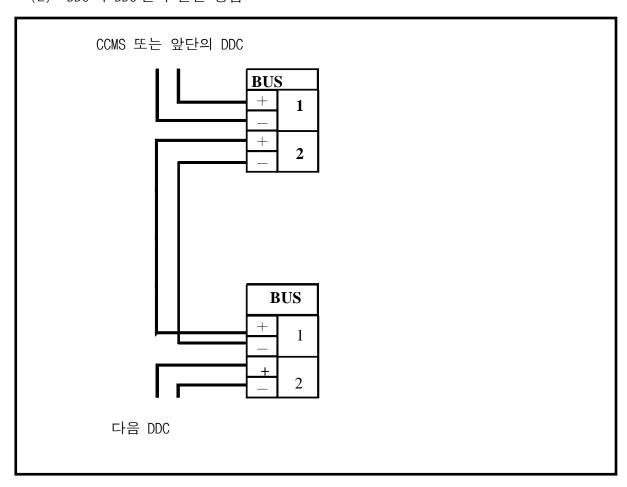
- 2. 종단 저항(Rb) 설치
- 통신이 정상일때는 종단저항을 설치 안해도 무방
- 통신선의 임피던스가 않맞아 통신불량이 발생할 경우는 반드시 종단저항을 설치하여야한다.

#### ■ 설치방법

- 1. RS-485 보드의 스위치(JP1)을 "ON"으로 설정한다.
- 2. 마지막 DDC BACK 보드(만약 DDC#1~DDC#8을 사용하면 DDC#8에 종단저항을 설치한다.)의 S1-BUS 선에 120Ω(Rb)을 그림과같이 연결시키면 종단저항 설치는 끝난다. ( 120Ω 종단저항은 매뉴얼에 포함되어 있음)




HiCEL 사용 설명서 6. 설치 방법


# 6.3 결선 방법

#### 6.3.1. 통신 신호

(1) 중앙 감시반 PC 와 DDC 간의 결선 방법

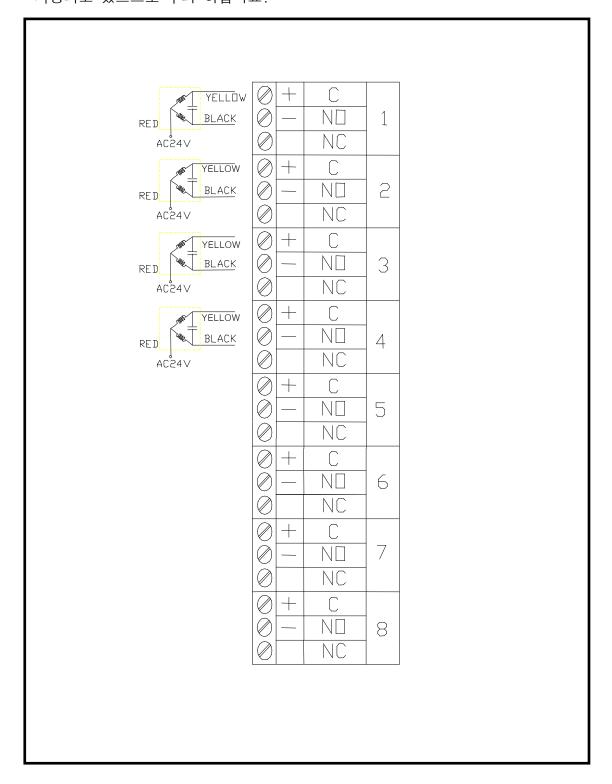


# (2) DDC 와 DDC 간의 결선 방법



#### 6.3.2 아날로그 입력 (AI)

아래의 그림은 아날로그 입력의 형태에 따른 결선 방법입니다. 주의해야 할 점은 스위치를 반드시 전류 입력의 경우, 해당 아날로그 입력 보드의 전류 입력 딥 스위치 (SW2)의 해당채널을 "S/W ON"시켜야 합니다. (\$\overline{\Sigma} 6.2.5 의 아날로그 입력 보드 딥 스위치 설치 방법을 참조 하십시요.)

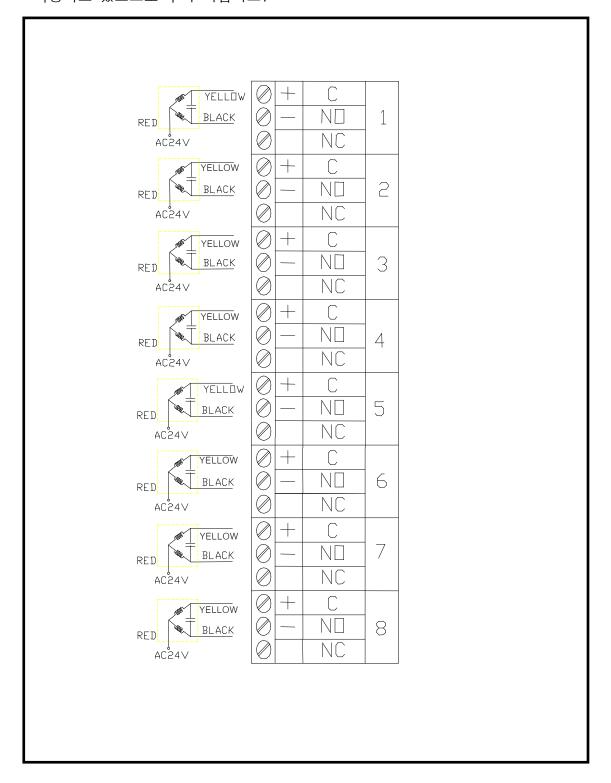

|                                                       | -ai             |          |   |  |  |  |  |
|-------------------------------------------------------|-----------------|----------|---|--|--|--|--|
| Φ <del>+ + + * * * *</del>                            |                 | NID      | , |  |  |  |  |
| 4-20mA 0-1V 2-10V 0-10V PT100 PT1000 PT3000 BALCO50   |                 | NC       |   |  |  |  |  |
|                                                       |                 | 140      |   |  |  |  |  |
|                                                       |                 | U<br>N□  |   |  |  |  |  |
| 4-20mA 0-1V 2-10V 0-10V PT100 PT1000 PT3000 BALCO500  |                 | NC       | 2 |  |  |  |  |
| 4 2011A 0 1V 2 10V 0 10V F1100 F11000 F15000 BALCCOOK | <u> </u>        | 170      |   |  |  |  |  |
|                                                       |                 | VID.     |   |  |  |  |  |
| 4-20mA 0-1V 2-10V 0-10V PT100 PT1000 PT3000 BALCO50   |                 | NC       | 3 |  |  |  |  |
| 4-2011A 0-17 2-107 0-107 P1100 P11000 P13000 BALCO301 |                 | NC       |   |  |  |  |  |
|                                                       |                 | L        |   |  |  |  |  |
|                                                       |                 | NU       | 4 |  |  |  |  |
| 4-20mA 0-1V 2-10V 0-10V PT100 PT1000 PT3000 BALCO50   |                 | NC _     |   |  |  |  |  |
| *                                                     | 7Ø ±            | <u>C</u> | _ |  |  |  |  |
|                                                       |                 | NU       | 5 |  |  |  |  |
| 4-20mA 0-1V 2-10V 0-10V PT100 PT1000 PT3000 BALCO50   |                 | NC       |   |  |  |  |  |
| * LLL & & & &                                         | <b></b>  ∅ ±    | С        |   |  |  |  |  |
| ~ L L L \ \ \ \ \ \                                   | <b>-</b>  ∅     | NΠ       | 6 |  |  |  |  |
| 4-20mA 0-1V 2-10V 0-10V PT100 PT1000 PT3000 BALCO500  |                 |          |   |  |  |  |  |
| Y L L L L L L L L                                     |                 | С        |   |  |  |  |  |
| Y                                                     | <b></b>         | Ν        | 7 |  |  |  |  |
| 4-20mA 0-1V 2-10V 0-10V PT100 PT1000 PT3000 BALCO50   | 0 0             | NC       |   |  |  |  |  |
| <u> </u>                                              | $- \otimes  + $ | С        |   |  |  |  |  |
|                                                       | <b></b>         | NO       | 8 |  |  |  |  |
| 4-20mA 0-1V 2-10V 0-10V PT100 PT1000 PT3000 BALCO50   |                 | NC       |   |  |  |  |  |
|                                                       |                 |          |   |  |  |  |  |

#### 6.3.3 아날로그 출력 (AO 4CH)

아래의 그림은 아날로그 출력의 결선도 입니다.

모터 드라이브 (Q7001A)에서 오는 3가지 색깔 케이블의 내용은 빨강(AC24V),

노랑(DC 2-10V), 검정(GND)으로 구성되어 있으며 검정선이 AC와 DC 공통 GND 선으로 사용되고 있으므로 주의 하십시요.




#### 6.3.3 아날로그 출력 (AO 8CH)

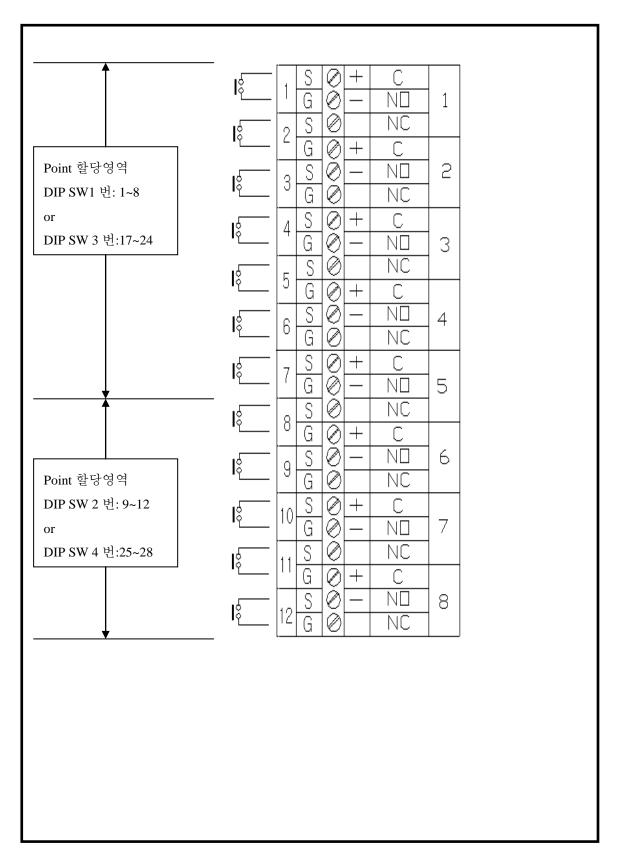
아래의 그림은 아날로그 출력의 결선도 입니다.

모터 드라이브 (Q7001A)에서 오는 3가지 색깔 케이블의 내용은 빨강(AC24V),

노랑(DC 2-10V), 검정(GND)으로 구성되어 있으며 검정선이 AC와 DC 공통 GND 선으로 사용되고 있으므로 주의 하십시요.



# 6.3.5 디지털 입력 (DI 8CH)

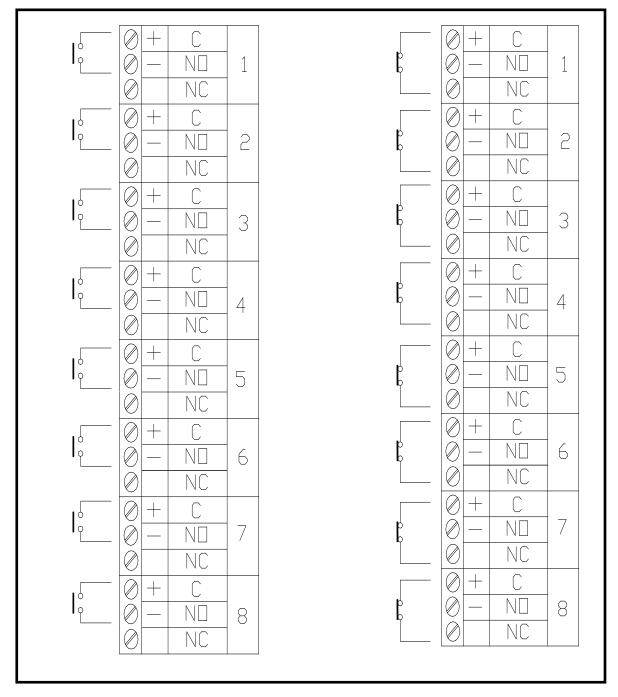

아래의 그림은 디지털 입력의 결선 방법 입니다. (무전압 접점 방식)

|   |   | +                                                | C<br>NO       | 1 |
|---|---|--------------------------------------------------|---------------|---|
|   |   | 1                                                | NC            |   |
|   |   | <del>                                     </del> | ND            | 2 |
|   | 0 |                                                  | NC            |   |
|   |   | +                                                | C<br>ND       | 3 |
|   | 0 |                                                  | NC            |   |
|   |   | +                                                | C<br>ND       | 4 |
|   |   |                                                  | NC            |   |
|   |   | _                                                | NO<br>NO      | 5 |
|   |   | +                                                |               | 6 |
|   |   |                                                  | NC            |   |
| 0 | 0 | +                                                | C<br>ND       | 7 |
|   | 0 |                                                  | NC            |   |
|   |   | <u>+</u><br>                                     | C<br>NO<br>NC | 8 |

- 주) DI 라인에 유도가 발생(3 Vac 이상)될 경우 필요시
  - 1. 보조 Relay 를 사용후 입력 결선 처리한다.
  - 2. DI Noise Filter 를 사용한다.

## 6.3.6 디지털 입력 (DI 12CH)

아래의 그림은 디지털 입력의 결선 방법 입니다. (무전압 접점 방식)




#### 6.3.7 디지털 출력 (DO)

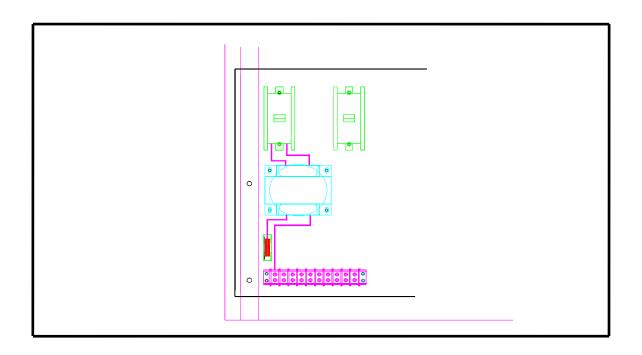
아래의 그림은 디지털 출력의 결선 입니다.

디지털 출력의 결선은 접점 출력의 종류에 따라 2가지의 결선 방법이 존재 합니다. 주의하여야 할 점은 접점단에 접점 보호용 CR ARRAY를 연결하여 주어야하는 사항 입니다. (DO B/D REV. 4이상에는 "NO" 출력단에 CR ARRAY 가 장착되어 있음)

1) 8개 모두 "NO"접점 사용의 경우 2) 8개 모두 "NC"접점 사용의 경우

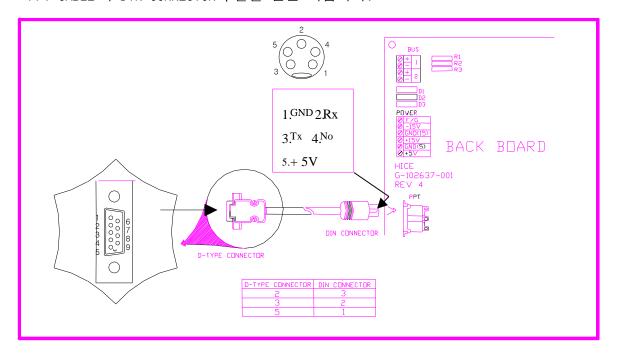


주) 사용되는 MCC 에 Timer 접점을 사용시, Spark Killer(CR Array)를 제거하여야, DO가 정상 동작한다.


6.3.8 적산 입력 (TOT) 아래의 그림은 적산 입력의 결선 방법입니다.

|   |     | C<br>NO                 | 1 |  |
|---|-----|-------------------------|---|--|
|   |     | NC                      |   |  |
|   |     |                         | 2 |  |
|   |     | NC                      | _ |  |
|   | 0 + | C                       |   |  |
|   |     | N                       | 3 |  |
|   |     | NC                      |   |  |
|   | +   | C                       |   |  |
| ' |     | NO                      | 4 |  |
|   |     | NC                      |   |  |
|   |     | C                       | _ |  |
|   |     | NO                      | 5 |  |
|   |     | NC                      |   |  |
|   |     | C<br>NO                 | 6 |  |
|   |     | NC                      |   |  |
|   | 0 + | C                       |   |  |
|   |     | $\overline{\mathbb{N}}$ | 7 |  |
|   |     | NC                      |   |  |
|   | 0 + | C                       |   |  |
|   |     | N                       | 8 |  |
|   |     | NC                      |   |  |
|   |     |                         |   |  |
|   |     |                         |   |  |
|   |     |                         |   |  |
|   |     |                         |   |  |
|   |     |                         |   |  |

■ TOT B/D는 최대 4Point 까지 사용가능함니다.

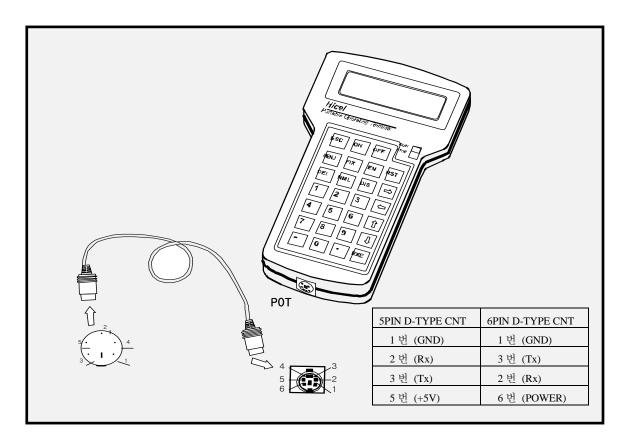

HiCEL 사용 설명서 6. 설치 방법

# 6.3.9 AC 24V 출력 (AO 출력용 전원) 아래의 그림은 AC 24V의 결선 방법 입니다.



# 6.4 PPT 연결 방법

PPT 연결 방법은 아래의 그림과 같이 컴퓨터의 SERIAL PORT에 PPT CABLE의 D-TYPE CONNECTOR 부분(Female)을 연결하고 HiCEL BACK B/D PPT 에 PPT CABLE의 DIN CONNECTOR 부분을 연결 시킵니다.




#### 6.5 POT 연결 방법

아래의 그림은 POT를 연결해서 사용 할 때의 연결 방법에 대한 그림 입니다.

아래의 그림과 같이 POT 를 HiCEL DDC 에 연결할 경우 5PIN DIN CONNECTOR 는 HiCEL DDC 쪽에 6PIN DIN CONNECTOR 는 POT 쪽에 연결하여 주면 됩니다.

POT 사용 방법은 POT 사용 설명서를 참조 하십시오.



#### 7. 유지 보수 및 서비스

#### 1) 유지 보수

이 시스템은 HiCEL 설치 설명서 첫 장에 기술되어 있는 사항에 유의하여 유지 보수 되어 야 합니다.

# 2) 서비스

만일 시스템에 이상이 발생되었을 경우에는 곧바로 A/S 요청을 하여 주시기 바랍니다. A/S 요청시 연락처는 본 책자의 뒷면에 명시되어 있습니다.

#### 8.1 기본 유니트 (BASIC UNIT)

- → 구성 : 입출력 보드들을 제외한 모든 기본장치 통신 보드 (COM B/D)
   중앙 연산 제어 보드 (CPU B/D)
- 72시간 배터리 백업기능
- RS-485 통신 (9600 bps)---- CCMS 와 DDC 간 통신
- RS-232 통신 (2400 bps)---- POT
- WATCH DOG 타이머 기능
- SLOT CONNECT 및 입출력 터미널 블럭 장착
- 소비 전력:16 VA

## 8.2 아날로그 입력 보드 ( AI )

- 8 관제점 / 보드 (DDC 당 최대 32 관제점 가능 )
- 입력 신호 종류 : PT 100 (2 선식), PT1000, PT 3000, BALCO500
- 0 1 V, 2 10 V,0 10V, 4 20 mA
- 12 Bit 아날로그 / 디지털 변환
- 이득 조정 가능
- 온도 보상회로
- 계측오차 1%내외
- 보드번호 선택 딥 스위치
- 출력 레벨 상태 표시
- 소비 전력 : 2.2VA

#### 8.3 아날로그 출력 보드 ( AO )

- 8(4) 관제점 / 보드 (DDC 당 최대 32 관제점 가능 )
- 출력 신호 : 2 10 V DC, 10 mA 선형 출력
- 8-Bit 아날로그 / 디지털 변환
- 보드번호 선택 딥 스위치
- 소비 전력 : 2 VA

#### 8.4 디지털 입력 보드 ( DI )

- 8(12) 관제점 / 보드 (DDC 당 최대 32(48) 관제점 가능 )
- 입력 신호 : 접점 입력 (무전압)
- 순간 DEBOUNCE 무시 회로
- 입력 보호회로 구성 (최대 30 V)
- 보드 번호 선택 딥 스위치
- 소비 전력 : 1.5 VA

# 8.5 디지털 출력 보드( DO )

- 8 관제점 / 보드 (DDC 당 최대 32 관제점 가능 )
- 출력 신호 : 보드상에 릴레이 부착

최대 접점 전압: 300V, 6A

코일 구동 전압:5V, 150 mA

- 보드 번호 선택 딥 스위치
- 소비 전력 :8 VA

## 8.6 적산 입력 ( TOTALIZER INPUT )

- MICROPROCESSOR 채택
- 4관제점 / 보드 (DDC 당 최대 4관제점 가능 )
- 입력 신호 : 23 COUNT / sec 이상 접점 입력

인지 시간 : 10 ms/count

- 순간 DEBOUNCE 무시 회로
- 보드 번호 선택 딥 스위치
- 소비 전력 : 1.5 VA

#### 8.7 전 원

- 입력 전원: 220V AC
- 출력 전원: +5V DC, ±15 V DC

| CABLE | 기능        | CABLE 명 | 선지름    | 최대 사용 거리 | 비고       |
|-------|-----------|---------|--------|----------|----------|
| E     | 통신 CABLE  | TJV 2C  | 1.0 mm | 1200 m   | 18AWG    |
|       | (RS-485)  |         |        |          |          |
|       | DI        | TJV 2C  | 1.0 mm | 200 m    | 18AWG    |
| ΑI    | PT 100    | TJV 2C  | 1.0 mm | 200 m    | 18~20AWG |
|       | PT 3000   | TJV 2C  | 1.0 mm | 200 m    | 18~20AWG |
|       | PT 1000   | TJV 2C  | 1.0 mm | 200 m    | 18~20AWG |
|       | BALC0500  | TJV 2C  | 1.0 mm | 200 m    | 18~20AWG |
|       | 0 - 1 V   | TJV 2C  | 1.0 mm | 200 m    | 18~20AWG |
|       | 0 - 10 V  | TJV 2C  | 1.0 mm | 200 m    | 18~20AWG |
|       | 2 - 10 V  | TJV 2C  | 1.0 mm | 200 m    | 18~20AWG |
|       | 4 - 20 mA | TJV 2C  | 1.0 mm | 200 m    | 18~20AWG |
|       | D0        | TJV 2C  | 1.0 mm | 200 m    | 18AWG    |
|       | AO        | TJV 2C  | 1.0 mm | 200 m    | 18AWG    |
|       | TOT       | TJV 2C  | 1.0 mm | 200 m    | 18AWG    |

주 1) 18AWG :  $0.823 \text{ mm}^2$  20AWG :  $0.519 \text{ mm}^2$ 

주 2) RS-485 통신선과 다른 입/출력 WIRE 는 반드시 별도의 배선관을 사용하여 분리시공 해야 함.

주 3) 모든 입/출력 WIRE 는 유도전압을 방지하기위해 종류별(AI,AO,DI,DO,TOT)로 별도 배선관을 사용해야 함.

# HiCEL 3.0 사용 설명서

( Ver. 1.0 )