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The Groverian measures are analytically computed in various types of three-qubit states. The final
results are also expressed in terms of local-unitary invariant quantities in each type. This fact reflects
the manifest local-unitary invariance of the Groverian measure. It is also shown that the analytical
expressions for various types have correct limits to other types. For some types (type 4 and type 5) we
failed to compute the analytical expression of the Groverian measure in this paper. However, from the
consideration of local-unitary invariants we have shown that the Groverian measure in type 4 should be
independent of the phase factor ϕ, which appear in the three-qubit state |ψ〉. This fact with geometric
interpretation on the Groverian measure may enable us to derive the analytical expressions for general
arbitrary three-qubit states in near future.
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1. Introduction

Recently, much attention is paid to quantum entanglement[1]. It is believed in quantum information
community that entanglement is the physical resource which makes quantum computer outperforms
classical one[2]. Thus in order to exploit fully this physical resource for constructing and developing
quantum algorithms it is important to quantify the entanglement. The quantity for the quantification
is usually called entanglement measure.

About decade ago the axioms which entanglement measures should satisfy were studied[3]. The
most important property for measure is monotonicity under local operation and classical communi-
cation (LOCC)[4]. Following the axioms, many entanglement measures were constructed such as
relative entropy[5], entanglement of distillation[6] and formation[7, 8, 9, 10], geometric measure[11,
12, 13, 14], Schmidt measure[15] and Groverian measure[16]. Entanglement measures are used in
various branches of quantum mechanics. Especially, recently, they are used to try to understand
Zamolodchikov’s c-theorem[17] more profoundly. It may be an important application of the quantum
information techniques to understand the effect of renormalization group in field theories[18].
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926 Three-qubit Groverian measure

The purpose of this paper is to compute the Groverian measure for various three-qubit quantum
states.The Groverian measureG(ψ) for three-qubit state |ψ〉 is defined byG(ψ) ≡ √

1 − Pmax where

Pmax = max
|q1〉,|q2〉,|q3〉

|〈q1|〈q2|〈q3|ψ〉|2. (1)

Thus Pmax can be interpreted as a maximal overlap between the given state |ψ〉 and product states.
Groverian measure is an operational treatment of a geometric measure. Thus, if one can compute
G(ψ), one can also compute the geometric measure of pure state by G 2(ψ). Sometimes it is more
convenient to re-express Eq.(1) in terms of the density matrix ρ = |ψ〉〈ψ|. This can be easily accom-
plished by an expression

Pmax = max
R1,R2,R3

Tr
[
ρR1 ⊗R2 ⊗R3

]
(2)

where Ri ≡ |qi〉〈qi| is the density matrix for the product state. Eq.(1) and Eq.(2) manifestly show
that Pmax andG(ψ) are local-unitary(LU) invariant quantities. Since it is well-known that three-qubit
system has five independent LU-invariants[19, 20, 21], say J i(i = 1, · · · , 5), we would like to focus
on the relation of the Groverian measures to LU-invariants J i’s in this paper.

This paper is organized as follows. In section II we review simple case, i.e. two-qubit system.
Using Bloch form of the density matrix it is shown in this section that two-qubit system has only
one independent LU-invariant quantity, say J . It is also shown that Groverian measure and Pmax for
arbitrary two-qubit states can be expressed solely in terms of J . In section III we have discussed how
to derive LU-invariants in higher-qubit systems. In fact, we have derived many LU-invariant quantities
using Bloch form of the density matrix in three-qubit system. It is shown that all LU-invariants derived
can be expressed in terms of Ji’s discussed in Ref.[20]. Recently, it was shown in Ref.[22] that Pmax

for n-qubit state can be computed from (n− 1)-qubit reduced mixed state. This theorem was used in
Ref.[23] and Ref.[24] to compute analytically the geometric measures for various three-qubit states.
In this section we have discussed the physical reason why this theorem is possible from the aspect
of LU-invariance. In section IV we have computed the Groverian measures for various types of the
three-qubit system. The five types we discussed in this section were originally developed in Ref.[20]
for the classification of the three-qubit states. It has been shown that the Groverian measures for type
1, type 2, and type 3 can be analytically computed. We have expressed all analytical results in terms
of LU-invariants Ji’s. For type 4 and type 5 the analytical computation seems to be highly nontrivial
and may need separate publications. Thus the analytical calculation for these types is not presented
in this paper. The results of this section are summarized in Table I. In section V we have discussed
the modified W-like state, which has three-independent real parameters. In fact, this state cannot be
categorized in the five types discussed in section IV. The analytic expressions of the Groverian measure
for this state was computed recently in Ref.[24]. It was shown that the measure has three different
expressions depending on the domains of the parameter space. It turned out that each expression has
its own geometrical meaning. In this section we have re-expressed all expressions of the Groverian
measure in terms of LU-invariants. In section VI brief conclusion is given.

2. Two Qubit: Simple Case

In this section we consider Pmax for the two-qubit system. The Groverian measure for two-qubit
system is already well-known[25]. However, we revisit this issue here to explore how the measure is
expressed in terms of the LU-invariant quantities. The Schmidt decomposition[26] makes the most
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general expression of the two-qubit state vector to be simple form

|ψ〉 = λ0|00〉 + λ1|11〉 (3)

with λ0, λ1 ≥ 0 and λ2
0 + λ2

1 = 1. The density matrix for |ψ〉 can be expressed in the Bloch form as
following:

ρ = |ψ〉〈ψ| =
1
4

[�⊗ �+ v1ασα ⊗ �+ v2α�⊗ σα + gαβσα ⊗ σβ ] , (4)

where

�v1 = �v2 =

⎛
⎝ 0

0
λ2

0 − λ2
1

⎞
⎠ , gαβ =

⎛
⎝ 2λ0λ1 0 0

0 −2λ0λ1 0
0 0 1

⎞
⎠ . (5)

In order to discuss the LU transformation we consider first the quantity UσαU
† where U is 2 × 2

unitary matrix. With direct calculation one can prove easily

UσαU
† = Oαβσβ , (6)

where the explicit expression of Oαβ is given in appendix A. Since Oαβ is a real matrix satisfying
OOT = OTO = �, it is an element of the rotation group O(3). Therefore, Eq.(6) implies that the
LU-invariants in the density matrix (4) are |�v1|, |�v2|, Tr[ggT ] etc.

All LU-invariant quantities can be written in terms of one quantity, say J ≡ λ 2
0λ

2
1. In fact, J can

be expressed in terms of two-qubit concurrence[9] C by C 2/4. Then it is easy to show

|�v1|2 = |�v2|2 = 1 − 4J, (7)

gαβgαβ = 1 + 8J.

It is well-known that Pmax is simply square of larger Schmidt number in two-qubit case

Pmax = max
(
λ2

0, λ
2
1

)
. (8)

It can be re-expressed in terms of reduced density operators

Pmax =
1
2

[
1 +

√
1 − 4detρA

]
, (9)

where ρA = TrBρ = (1 + v1ασα)/2. Since Pmax is invariant under LU-transformation, it should be
expressed in terms of LU-invariant quantities. In fact, Pmax in Eq.(9) can be re-written as

Pmax =
1
2

[
1 +

√
1 − 4J

]
. (10)

Eq.(10) implies that Pmax is manifestly LU-invariant.

3. Local Unitary Invariants

The Bloch representation of the 3-qubit density matrix can be written in the form

ρ =
1
8

[
�⊗ �⊗ �+ v1ασα ⊗ �⊗ �+ v2α�⊗ σα ⊗ �+ v3α�⊗ �⊗ σα (11)

+h(1)
αβ�⊗ σα ⊗ σβ + h

(2)
αβσα ⊗ �⊗ σβ + h

(3)
αβσα ⊗ σβ ⊗ �+ gαβγσα ⊗ σβ ⊗ σγ

]
,
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where σα is Pauli matrix. According to Eq.(6) and appendix A it is easy to show that the LU-invariants
in the density matrix (11) are |�v1|, |�v2|, |�v3|, Tr[h(1)h(1)T ], Tr[h(2)h(2)T ], Tr[h(3)h(3)T ], gαβγgαβγ etc.

Few years ago Acı́n et al[20] represented the three-qubit arbitrary states in a simple form using a
generalized Schmidt decomposition[26] as following:

|ψ〉 = λ0|000〉 + λ1e
iϕ|100〉 + λ2|101〉 + λ3|110〉 + λ4|111〉 (12)

with λi ≥ 0, 0 ≤ ϕ ≤ π, and
∑

i λ
2
i = 1. The five algebraically independent polynomial LU-

invariants were also constructed in Ref.[20]:

J1 = λ2
1λ

2
4 + λ2

2λ
2
3 − 2λ1λ2λ3λ4 cosϕ, (13)

J2 = λ2
0λ

2
2, J3 = λ2

0λ
2
3, J4 = λ2

0λ
2
4,

J5 = λ2
0(J1 + λ2

2λ
2
3 − λ2

1λ
2
4).

In order to determine how many states have the same values of the invariants J 1, J2, ...J5, and
therefore how many further discrete-valued invariants are needed to specify uniquely a pure state
of three qubits up to local transformations, one would need to find the number of different sets of
parameters ϕ and λi(i = 0, 1, ...4), yielding the same invariants. Once λ0 is found, other parameters
are determined uniquely and therefore we derive an equation defining λ 0 in terms of polynomial
invariants

(J1 + J4)λ4
0 − (J5 + J4)λ2

0 + J2J3 + J2J4 + J3J4 + J2
4 = 0. (14)

This equation has at most two positive roots and consequently an additional discrete-valued in-
variant is required to specify uniquely a pure three qubit state. Generally 18 LU-invariants, nine of
which may be taken to have only discrete values, are needed to determine a mixed 2-qubit state [27].

If one represents the density matrix |ψ〉〈ψ| as a Bloch form like Eq.(11), it is possible to construct
v1α, v2α, v3α, h(1)

αβ , h(2)
αβ , h(3)

αβ , and gαβγ explicitly, which are summarized in appendix B. Using these
explicit expressions one can show directly that all polynomial LU-invariant quantities of pure states
are expressed in terms of Ji as following:

|�v1|2 = 1 − 4(J2 + J3 + J4), |�v2|2 = 1 − 4(J1 + J3 + J4) (15)

|�v3|2 = 1 − 4(J1 + J2 + J4), Tr[h(1)h(1)T ] = 1 + 4(2J1 − J2 − J3)

Tr[h(2)h(2)T ] = 1 − 4(J1 − 2J2 + J3), Tr[h(3)h(3)T ] = 1 − 4(J1 + J2 − 2J3)

gαβγgαβγ = 1 + 4(2J1 + 2J2 + 2J3 + 3J4)

h
(3)
αβv

(1)
α v

(2)
β = 1 − 4(J1 + J2 + J3 + J4 − J5).

Recently, Ref.[22] has shown that Pmax for n-qubit pure state can be computed from (n−1)-qubit
reduced mixed state. This is followed from a fact

max
R1,R2···Rn

Tr
[
ρR1 ⊗R2 ⊗ · · · ⊗Rn

]
= max

R1,R2···Rn−1
Tr

[
ρR1 ⊗R2 ⊗ · · · ⊗Rn−1 ⊗ �

]
(16)

which is Theorem I of Ref.[22]. Here, we would like to discuss the physical meaning of Eq.(16) from
the aspect of LU-invariance. Eq.(16) in 3-qubit system reduces to

Pmax = max
R1,R2

Tr
[
ρABR1 ⊗R2

]
(17)
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where ρAB = TrCρ. From Eq.(11) ρAB simply reduces to

ρ =
1
4

[
�⊗ �+ v1ασα ⊗ �+ v2α�⊗ σα + h

(3)
αβσα ⊗ σβ

]
(18)

where v1α, v2α and h(3)
αβ are explicitly given in appendix B. Of course, the LU-invariant quantities

of ρAB are |�v1|, |�v2|, Tr[h(3)h(3)T ], h(3)
αβv1αv2β etc, all of which, of course, can be re-expressed in

terms of J1, J2, J3, J4 and J5. It is worthwhile noting that we need all Ji’s to express the LU-
invariant quantities of ρAB . This means that the reduced state ρAB does have full information on the
LU-invariance of the original pure state ρ.

Indeed, any reduced state resulting from a partial trace over a single qubit uniquely determines
any entanglement measure of original system, given that the initial state is pure. Consider an (n-
1)-qubit reduced density matrix that can be purified by a single qubit reference system. Let |ψ ′〉 be
any joint pure state. All other purifications can be obtained from the state |ψ ′〉 by LU-transformations
U⊗�⊗(n−1), whereU is a local unitary matrix acting on single qubit. Since any entanglement measure
must be invariant under LU-transformations, it must be the same for all purifications independently of
U . Hence the reduced density matrix determines any entanglement measure on the initial pure state.
That is why we can compute Pmax of n-qubit pure state from the (n− 1)-qubit reduced mixed state.

Generally, the information on the LU-invariance of the original n-qubit state is partly lost if we
take partial trace twice. In order to show this explicitly let us consider ρA ≡ TrBρAB and ρB ≡
TrAρAB:

ρA =
1
2

[�+ v1ασα] , ρB =
1
2

[�+ v2ασα] . (19)

Eq.(6) and appendix A imply that their LU-invariant quantities are only |�v 1| and |�v2| respectively.
Thus, we do not need J5 to express the LU-invariant quantities of ρA and ρB . This fact indicates that
the mixed states ρA and ρB partly lose the information of the LU-invariance of the original pure state
ρ. This is why (n− 2)-qubit reduced state cannot be used to compute Pmax of n-qubit pure state.

4. Calculation of Pmax

4.1. General Feature

If we insert the Bloch representation

R1 =
�+ �s1 · �σ

2
R2 =

�+ �s2 · �σ
2

(20)

with |�s1| = |�s2| = 1 into Eq.(17), Pmax for 3-qubit state becomes

Pmax =
1
4

max
|�s1|=|�s2|=1

[1 + �r1 · �s1 + �r2 · �s2 + gijs1is2j ] (21)

where
�r1 = Tr

[
ρA�σ

]
, �r2 = Tr

[
ρB�σ

]
, gij = Tr

[
ρABσi ⊗ σj

]
. (22)

Since in Eq.(21) Pmax is maximization with constraint |�s1| = |�s2| = 1, we should use the Lagrange
multiplier method, which yields a pair of equations

�r1 + g�s2 = Λ1�s1 (23)

�r2 + gT�s1 = Λ2�s2,
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where the symbol g represents the matrix gij in Eq.(22). Thus we should solve �s1, �s2, Λ1 and Λ2 by
eq.(23) and the constraint |�s1| = |�s2| = 1. Although it is highly nontrivial to solve Eq.(23), sometimes
it is not difficult if the given 3-qubit state |ψ〉 has rich symmetries. Now, we would like to compute
Pmax for various types of 3-qubit system.

4.2. Type 1 (Product States): J1 = J2 = J3 = J4 = J5 = 0

In order for all Ji’s to be zero we have two cases λ0 = J1 = 0 or λ2 = λ3 = λ4 = 0.

4.2.1. λ0 = J1 = 0

If λ0 = 0, |ψ〉 in Eq.(12) becomes |ψ〉 = |1〉 ⊗ |BC〉 where

|BC〉 = λ1e
iϕ|00〉 + λ2|01〉 + λ3|10〉 + λ4|11〉. (24)

Thus Pmax for |ψ〉 equals to that for |BC〉. Since |BC〉 is two-qubit state, one can easily compute
Pmax using Eq.(9), which is

Pmax =
1
2

[
1 +

√
1 − 4det (TrB|BC〉〈BC|)

]
=

1
2

[
1 +

√
1 − 4J1

]
. (25)

If, therefore, λ0 = J1 = 0, we have Pmax = 1, which gives a vanishing Groverian measure.

4.2.2. λ2 = λ3 = λ4 = 0

In this case |ψ〉 in Eq.(12) becomes

|ψ〉 =
(
λ0|0〉 + λ1e

iϕ|1〉) ⊗ |0〉 ⊗ |0〉. (26)

Since |ψ〉 is completely product state, Pmax becomes one.

4.3. Type2a (biseparable states)

In this type we have following three cases.

4.3.1. J1 	= 0 and J2 = J3 = J4 = J5 = 0

In this case we have λ0 = 0. Thus Pmax for this case is exactly same with Eq.(25).

4.3.2. J2 	= 0 and J1 = J3 = J4 = J5 = 0

In this case we have λ2 = λ4 = 0. Thus Pmax for |ψ〉 equals to that for |AC〉, where

|AC〉 = λ0|00〉 + λ1e
iϕ|10〉 + λ2|11〉. (27)

Using Eq.(9), therefore, one can easily compute Pmax, which is

Pmax =
1
2

[
1 +

√
1 − 4J2

]
. (28)

4.3.3. J3 	= 0 and J1 = J2 = J4 = J5 = 0
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In this case Pmax for |ψ〉 equals to that for |AB〉, where

|AB〉 = λ0|00〉 + λ1e
iϕ|10〉+ λ3|11〉. (29)

Thus Pmax for |ψ〉 is

Pmax =
1
2

[
1 +

√
1 − 4J3

]
. (30)

4.4. Type2b (generalized GHZ states): J4 	= 0, J1 = J2 = J3 = J5 = 0

In this case we have λ1 = λ2 = λ3 = 0 and |ψ〉 becomes

|ψ〉 = λ0|000〉+ λ4|111〉 (31)

with λ2
0 + λ2

4 = 1. Then it is easy to show

�r1 = Tr
[
ρA�σ

]
= (0, 0, λ2

0 − λ2
4) (32)

�r2 = Tr
[
ρB�σ

]
= (0, 0, λ2

0 − λ2
4)

gij = Tr
[
ρABσi ⊗ σj

]
=

⎛
⎝ 0 0 0

0 0 0
0 0 1

⎞
⎠ .

Thus Pmax reduces to

Pmax =
1
4

max
|�s1|=|�s2|=1

[
1 + (λ2

0 − λ2
4)(s1z + s2z) + s1zs2z

]
. (33)

Since Eq.(33) is simple, we do not need to solve Eq.(23) for the maximization. If λ 0 > λ4, the
maximization can be achieved by simply choosing �s1 = �s2 = (0, 0, 1). If λ0 < λ4, we choose
�s1 = �s2 = (0, 0,−1). Thus we have

Pmax = max(λ2
0, λ

2
4). (34)

In order to express Pmax in Eq.(34) in terms of LU-invariants we follow the following procedure.
First we note

Pmax =
1
2

[
(λ2

0 + λ2
4) + |λ2

0 − λ2
4|

]
. (35)

Since |λ2
0 − λ2

4| =
√

(λ2
0 + λ2

4)2 − 4λ2
0λ

2
4 =

√
1 − 4J4, we get finally

Pmax =
1
2

[
1 +

√
1 − 4J4

]
. (36)

4.5. Type3a (tri-Bell states)

In this case we have λ1 = λ4 = 0 and |ψ〉 becomes

|ψ〉 = λ0|000〉 + λ2|101〉 + λ3|110〉 (37)

with λ2
0 + λ2

2 + λ2
3 = 1. If we take LU-transformation σx in the first-qubit, |ψ〉 is changed into |ψ ′〉

which is usual W-type state[28] as follows:

|ψ′〉 = λ0|100〉 + λ3|010〉 + λ2|001〉. (38)
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The LU-invariants in this type are

J1 = λ2
2λ

2
3 J2 = λ2

0λ
2
2 (39)

J3 = λ2
0λ

2
3 J5 = 2λ2

0λ
2
2λ

2
3.

Then it is easy to derive a relation

J1J2 + J1J3 + J2J3 =
√
J1J2J3 =

1
2
J5. (40)

Recently, Pmax for |ψ′〉 is computed analytically in Ref.[23] by solving the Lagrange multiplier
equations (23) explicitly. In order to express Pmax explicitly we first define

r1 = λ2
3 + λ2

2 − λ2
0 (41)

r2 = λ2
0 + λ2

2 − λ2
3

r3 = λ2
0 + λ2

3 − λ2
2

ω = 2λ0λ3.

Also we define

a = max(λ0, λ2, λ3) (42)

b = mid(λ0, λ2, λ3)

c = min(λ0, λ2, λ3).

Then Pmax is expressed differently in two different regions as follows. If a 2 ≥ b2+c2, Pmax becomes

P>
max = a2 = max(λ2

0, λ
2
2, λ

2
3). (43)

In order to express Pmax in terms of LU-invariants we express Eq.(43) differently as

P>
max =

1
4

[
(λ2

0 + λ2
3 + λ2

2) + |λ2
0 + λ2

3 − λ2
2| + |λ2

0 − λ2
3 + λ2

2| + |λ2
0 − λ2

3 − λ2
2|

]
. (44)

Using equalities

|λ2
0 + λ2

3 − λ2
2| =

√
1 − 4λ2

0λ
2
2 − 4λ2

2λ
2
3 =

√
1 − 4(J1 + J2) (45)

|λ2
0 − λ2

3 + λ2
2| =

√
1 − 4λ2

0λ
2
3 − 4λ2

2λ
2
3 =

√
1 − 4(J1 + J3)

|λ2
0 − λ2

3 − λ2
2| =

√
1 − 4λ2

0λ
2
2 − 4λ2

0λ
2
3 =

√
1 − 4(J2 + J3),

we can express Pmax in Eq.(43) as follows:

P>
max =

1
4

[
1 +

√
1 − 4(J1 + J2) +

√
1 − 4(J1 + J3) +

√
1 − 4(J2 + J3)

]
. (46)

If a2 ≤ b2 + c2, Pmax becomes

P<
max =

1
4

[
1 +

ω
√

(ω2 + r21 − r23)(ω2 + r22 − r23) − r1r2r3
ω2 − r23

]
. (47)
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It was shown in Ref.[23] that Pmax = 4R2, where R is a circumradius of the triangle λ0, λ2 and
λ3. When a2 ≤ b2 + c2, one can show easily r1 =

√
1 − 4(J2 + J3), r2 =

√
1 − 4(J1 + J3),

r3 =
√

1 − 4(J1 + J2), and ω = 2
√
J3. Using ω2 − r23 − r1r2r3 = 8λ2

0λ
2
2λ

2
3, One can show easily

that Pmax in Eq.(47) in terms of LU-invariants becomes

P<
max =

4
√
J1J2J3

4(J1 + J2 + J3) − 1
. (48)

Let us consider λ0 = 0 limit in this type. Then we have J2 = J3 = 0. Thus P>
max reduces to

(1/2)(1 +
√

1 − 4J1) which exactly coincides with Eq.(25). By same way one can prove that Eq.(46)
has correct limits to various other types.

4.6. Type3b (extended GHZ states)

This type consists of 3 types, i.e. λ1 = λ2 = 0, λ1 = λ3 = 0 and λ2 = λ3 = 0.

4.6.1. λ1 = λ2 = 0

In this case the state (12) becomes

|ψ〉 = λ0|000〉 + λ3|110〉 + λ4|111〉 (49)

with λ2
0 + λ2

3 + λ2
4 = 1. The non-vanishing LU-invariants are

J3 = λ2
0λ

2
3, J4 = λ2

0λ
2
4. (50)

Note that J3 + J4 is expressed in terms of solely λ0 as

J3 + J4 = λ2
0(1 − λ2

0). (51)

Eq.(49) can be re-written as

|ψ〉 = λ0|00q1〉 +
√

1 − λ2
0|11q2〉 (52)

where |q1〉 = |0〉 and |q2〉 = (1/
√

1 − λ2
0)(λ3|0〉 + λ4|1〉) are normalized one qubit states. Thus,

from Ref.[23], Pmax for |ψ〉 is

Pmax = max
(
λ2

0, 1 − λ2
0

)
=

1
2

[
1 +

√
(1 − 2λ2

0)2
]
. (53)

With an aid of Eq.(51)Pmax in Eq.(53) can be easily expressed in terms of LU-invariants as following:

Pmax =
1
2

[
1 +

√
1 − 4(J3 + J4)

]
. (54)

If we take λ3 = 0 limit in this type, we have J3 = 0, which makes Eq.(54) to be (1/2)(1+
√

1 − 4J4).
This exactly coincides with Eq.(36).

4.6.2. λ1 = λ3 = 0
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In this case |ψ〉 and LU-invariants are

|ψ〉 = λ0|0q10〉 +
√

1 − λ2
0|1q21〉 (55)

and
J2 = λ2

0λ
2
2, J4 = λ2

0λ
2
4 (56)

where |q1〉 = |0〉, |q2〉 = (1/
√

1 − λ2
0)(λ2|0〉 + λ4|1〉), and λ2

0 + λ2
2 + λ2

4 = 1. The same method
used in the previous subsection easily yields

Pmax =
1
2

[
1 +

√
1 − 4(J2 + J4)

]
. (57)

One can show that Eq.(57) has correct limits to other types.

4.6.3. λ2 = λ3 = 0

In this case |ψ〉 and LU-invariants are

|ψ〉 =
√

1 − λ2
4|q100〉 + λ4|q211〉 (58)

and
J1 = λ2

1λ
2
4, J4 = λ2

0λ
2
4 (59)

where |q1〉 = (1/
√

1 − λ2
4)(λ0|0〉 + λ1e

iϕ|1〉), |q2〉 = |1〉, and λ2
0 + λ2

1 + λ2
4 = 1. It is easy to show

Pmax =
1
2

[
1 +

√
1 − 4(J1 + J4)

]
. (60)

One can show that Eq.(60) has correct limits to other types.

4.7. Type4a (λ4 = 0)

In this case the state vector |ψ〉 in Eq.(12) reduces to

|ψ〉 = λ0|000〉+ λ1e
iϕ|100〉+ λ2|101〉+ λ3|110〉 (61)

with λ2
0 + λ2

1 + λ2
2 + λ2

3 = 1. The non-vanishing LU-invariants are

J1 = λ2
2λ

2
3 J2 = λ2

0λ
2
2 (62)

J3 = λ2
0λ

2
3 J5 = 2λ2

0λ
2
2λ

2
3.

From Eq.(62) it is easy to show √
J1J2J3 =

1
2
J5. (63)

The remarkable fact deduced from Eq.(62) is that the non-vanishing LU-invariants are independent of
the phase factor ϕ. This indicates that the Groverian measure for Eq.(61) is also independent of ϕ

In order to compute Pmax analytically in this type, we should solve the Lagrange multiplier equa-
tions (23) with

�r1 = Tr[ρA�σ] = (2λ0λ1 cosϕ, 2λ0λ1 sinϕ, 2λ2
0 − 1) (64)

�r2 = Tr[ρB�σ] = (2λ1λ3 cosϕ,−2λ1λ3 sinϕ, 1 − 2λ2
3)

gij = Tr[ρABσi ⊗ σj ] =

⎛
⎝ 2λ0λ3 0 2λ0λ1 cosϕ

0 −2λ0λ3 2λ0λ1 sinϕ
−2λ1λ3 cosϕ 2λ1λ3 sinϕ λ2

0 − λ2
1 − λ2

2 + λ2
3

⎞
⎠ .
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Although we have freedom to choose the phase factor ϕ, it is impossible to find singular values of the
matrix g, which makes it formidable task to solve Eq.(23). Based on Ref.[23] and Ref.[24], further-
more, we can conjecture that Pmax for this type may have several different expressions depending on
the domains in parameter space. Therefore, it may need long calculation to compute Pmax analyti-
cally. We would like to leave this issue for our future research work and the explicit expressions of
Pmax are not presented in this paper.

4.8. Type4b

This type consists of the 2 cases, i.e. λ2 = 0 and λ3 = 0.

4.8.1. λ2 = 0

In this case the state vector |ψ〉 in Eq.(12) reduces to

|ψ〉 = λ0|000〉+ λ1e
iϕ|100〉+ λ3|110〉+ λ4|111〉 (65)

with λ2
0 + λ2

1 + λ2
3 + λ2

4 = 1. The LU-invariants are

J1 = λ2
1λ

2
4 J3 = λ2

0λ
2
3 J4 = λ2

0λ
2
4. (66)

Eq.(66) implies that the Groverian measure for Eq.(65) is independent of the phase factor ϕ like type
4a. This fact may drastically reduce the calculation procedure for solving the Lagrange multiplier
equation (23). In spite of this fact, however, solving Eq.(23) is highly non-trivial as we commented in
the previous type. The explicit expressions of the Groverian measure are not presented in this paper
and we hope to present them elsewhere in the near future.

4.8.2. λ3 = 0

In this case the state vector |ψ〉 in Eq.(12) reduces to

|ψ〉 = λ0|000〉+ λ1e
iϕ|100〉+ λ2|101〉+ λ4|111〉 (67)

with λ2
0 + λ2

1 + λ2
2 + λ2

4 = 1. The LU-invariants are

J1 = λ2
1λ

2
4 J2 = λ2

0λ
2
2 J4 = λ2

0λ
2
4. (68)

Eq.(68) implies that the Groverian measure for Eq.(67) is independent of the phase factor ϕ like type
4a.

4.9. Type4c (λ1 = 0)

In this case the state vector |ψ〉 in Eq.(12) reduces to

|ψ〉 = λ0|000〉+ λ2|101〉+ λ3|110〉+ λ4|111〉 (69)

with λ2
0 + λ2

2 + λ2
3 + λ2

4 = 1. The LU-invariants in this type are

J1 = λ2
2λ

2
3 J2 = λ2

0λ
2
2 J3 = λ2

0λ
2
3 (70)

J4 = λ2
0λ

2
4 J5 = 2λ2

0λ
2
2λ

2
3.
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From Eq.(70) it is easy to show

J1(J2 + J3 + J4) + J2J3 =
√
J1J2J3 =

1
2
J5. (71)

In this type �r1, �r2 and gij defined in Eq.(22) are

�r1 = (0, 0, 2λ2
0 − 1) (72)

�r2 = (2λ2λ4, 0, λ2
0 + λ2

2 − λ3
3 − λ2

4)

gij =

⎛
⎝ 2λ0λ3 0 0

0 −2λ0λ3 0
−2λ2λ4 0 1 − 2λ2

2

⎞
⎠ .

Like type 4a and type 4b solving Eq.(23) is highly non-trivial mainly due to non-diagonalization of
gij . Of course, the fact that the first component of �r2 is non-zero makes hard to solve Eq.(23) too. The
explicit expressions of the Groverian measure in this type are not given in this paper.

4.10. Type5 (real states): ϕ = 0, π

4.10.1. ϕ = 0

In this case the state vector |ψ〉 in Eq.(12) reduces to

|ψ〉 = λ0|000〉 + λ1|100〉 + λ2|101〉 + λ3|110〉 + λ4|111〉 (73)

with λ2
0 + λ2

1 + λ2
2 + λ2

3 + λ2
4 = 1. The LU-invariants in this case are

J1 = (λ2λ3 − λ1λ4)2 J2 = λ2
0λ

2
2 J3 = λ2

0λ
2
3 (74)

J4 = λ2
0λ

2
4 J5 = 2λ2

0λ2λ3(λ2λ3 − λ1λ4).

It is easy to show
√
J1J2J3 = J5/2.

4.10.2. ϕ = π

In this case the state vector |ψ〉 in Eq.(12) reduces to

|ψ〉 = λ0|000〉 − λ1|100〉 + λ2|101〉 + λ3|110〉 + λ4|111〉 (75)

with λ2
0 + λ2

1 + λ2
2 + λ2

3 + λ2
4 = 1. The LU-invariants in this case are

J1 = (λ2λ3 + λ1λ4)2 J2 = λ2
0λ

2
2 J3 = λ2

0λ
2
3 (76)

J4 = λ2
0λ

2
4 J5 = 2λ2

0λ2λ3(λ2λ3 + λ1λ4).

It is easy to show
√
J1J2J3 = J5/2 in this type.

The analytic calculation of Pmax in type 5 is most difficult problem. In addition, we don’t know
whether it is mathematically possible or not. However, the geometric interpretation of Pmax presented
in Ref.[23] and Ref.[24] may provide us valuable insight. We hope to leave this issue for our future
research work too. The results in this section is summarized in Table I.
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Type conditions Pmax

Type I Ji = 0 1
Ji = 0 except J1

1
2

(
1 +

√
1 − 4J1

)
Type II a Ji = 0 except J2

1
2

(
1 +

√
1 − 4J2

)
Ji = 0 except J3

1
2

(
1 +

√
1 − 4J3

)
b Ji = 0 except J4

1
2

(
1 +

√
1 − 4J4

)
a λ1 = λ4 = 0 1

4

(
1+

√
1−4(J1+J2)+

√
1−4(J1+J3)+

√
1−4(J2+J3)

)
if a2 ≥ b2 + c2

4
√
J1J2J3/ (4(J1 + J2 + J3) − 1) if a2 ≤ b2 + c2

Type III λ1 = λ2 = 0 1
2

(
1 +

√
1 − 4(J3 + J4)

)
b λ1 = λ3 = 0 1

2

(
1 +

√
1 − 4(J2 + J4)

)
λ2 = λ3 = 0 1

2

(
1 +

√
1 − 4(J1 + J4)

)
a λ4 = 0 independent of ϕ: not presented

Type IV b λ2 = 0 independent of ϕ: not presented
λ3 = 0 independent of ϕ: not presented

c λ1 = 0 not presented
Type V ϕ = 0 not presented

ϕ = π not presented

Table I: Summary of Pmax in various types.

5. New Type

5.1. standard form

In this section we consider new type in 3-qubit states. The type we consider is

|Φ〉 = a|100〉+ b|010〉+ c|001〉 + q|111〉, a2 + b2 + c2 + q2 = 1. (77)

First, we would like to derive the standard form like Eq.(12) from |Φ〉. This can be achieved as
following. First, we consider LU-transformation of |Φ〉, i.e. (U ⊗ �⊗ �)|Φ〉, where

U =
1√

aq + bc

( √
aqeiθ

√
bceiθ

−√
bc

√
aq

)
. (78)

After LU-transformation, we perform Schmidt decomposition following Ref.[20]. Finally we choose
θ to make all λi to be positive. Then we can derive the standard form (12) from |Φ〉 with ϕ = 0 or π,
and

λ0 =

√
(ac+ bq)(ab+ cq)

aq + bc
(79)

λ1 =
√
abcq√

(ab+ cq)(ac+ bq)(aq + bc)
|a2 + q2 − b2 − c2|

λ2 =
1
λ0

|ac− bq| λ3 =
1
λ0

|ab− cq| λ4 =
2
√
abcq

λ0
.

It is easy to prove that the normalization condition a2 + b2 + c2 + q2 = 1 guarantees the normalization

λ2
0 + λ2

1 + λ2
2 + λ2

3 + λ2
4 = 1. (80)
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Since |Φ〉 has three free parameters, we need one more constraint between λ i’s. This additional
constraint can be derived by trial and error. The explicit expression for this additional relation is

λ2
0(λ

2
2 + λ2

3 + λ2
4) =

1
4
− λ2

1

λ2
4

(λ2
2 + λ2

4)(λ
2
3 + λ2

4). (81)

Since all λi’s are not vanishing but there are only three free parameters, |Φ〉 is not involved in the
types discussed in the previous section.

5.2. LU-invariants

Using Eq.(79) it is easy to derive LU-invariants which are

J1 = (λ1λ4 − λ2λ3)2 =
1

(ab+ cq)2(ac+ bq)2
(82)

× [
2abcq|a2 + q2 − b2 − c2| − (aq + bc)|(ab− cq)(ac− bq)|]2

J2 = λ2
0λ

2
2 = (ac− bq)2

J3 = λ2
0λ

2
3 = (ab− cq)2

J4 = λ2
0λ

2
4 = 4abcq

J5 = λ2
0

(
J1 + λ2

2λ
2
3 − λ2

1λ
2
4

)
.

One can show directly that J5 = 2
√
J1J2J3. Since |Φ〉 has three free parameters, there should

exist additional relation between Ji’s. However, the explicit expression may be hardly derived. In
principle, this constraint can be derived as following. First, we express the coefficients a, b, c, and q
in terms of J1, J2, J3 and J4 using first four equations of Eq.(82). Then the normalization condition
a2 + b2 + c2 + q2 = 1 gives explicit expression of this additional constraint. Since, however, this
procedure requires the solutions of quartic equation, it seems to be hard to derive it explicitly.

Since J1 contains absolute value, it is dependent on the regions in the parameter space. Direct
calculation shows that J1 is

J1 =

⎧⎨
⎩

(aq − bc)2 when (a2 + q2 − b2 − c2)(ab− cq)(ac− bq) ≥ 0
(aq − bc)2 [1 + 2(ab− cq)(ac− bq)(aq + bc)/(ab+ cq)(ac+ bq)(aq − bc)]2

when (a2 + q2 − b2 − c2)(ab− cq)(ac− bq) < 0.
(83)

Since Pmax is manifestly LU-invariant quantity, it is obvious that it also depends on the regions on
the parameter space.

5.3. calculation of Pmax

Pmax for state |Φ〉 in Eq.(77) has been analytically computed recently in Ref.[24]. It turns out that
Pmax is differently expressed in three distinct ranges of definition in parameter space. The final
expressions can be interpreted geometrically as discussed in Ref.[24]. To express Pmax explicitly we
define

r1 ≡ b2 + c2 − a2 − q2 r2 ≡ a2 + c2 − b2 − q2 (84)

r3 ≡ a2 + b2 − c2 − q2 ω ≡ ab+ qc μ ≡ ab− qc.

The first expression of Pmax, which can be expressed in terms of circumradius of convex quad-
rangle is
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P (Q)
max =

4(ab+ qc)(ac+ qb)(aq + bc)
4ω2 − r23

. (85)

The second expression of Pmax, which can be expressed in terms of circumradius of crossed-
quadrangle is

P (CQ)
max =

(ab− cq)(ac− bq)(bc− aq)
4S2

x

(86)

where

S2
x =

1
16

(a+ b+ c+ q)(a+ b − c− q)(a− b+ c− q)(−a+ b+ c− q). (87)

The final expression of Pmax corresponds to the largest coefficient:

P (L)
max = max(a2, b2, c2, q2) =

1
4

(1 + |r1| + |r2| + |r3|) . (88)

The applicable domain for each Pmax is fully discussed in Ref.[24].
Now we would like to express all expressions ofPmax in terms of LU-invariants. For the simplicity

we choose a simplified case, that is (a2 + q2 − b2 − c2)(ab − cq)(ac − bq) ≥ 0. Then it is easy to
derive

r21 = 1 − 4(J2 + J3 + J4) r22 = 1 − 4(J1 + J3 + J4) (89)

r23 = 1 − 4(J1 + J2 + J4) ω2 = J3 + J4.

Then it is simple to express P (Q)
max and P (CQ)

max as following:

P (Q)
max =

4
√

(J1 + J4)(J2 + J4)(J3 + J4)
4(J1 + J2 + J3 + 2J4) − 1

(90)

P (CQ)
max =

4
√
J1J2J3

4(J1 + J2 + J3 + J4) − 1
.

If we take q = 0 limit, we have λ4 = J4 = 0. Thus P (Q)
max and P (CQ)

max reduce to 4
√
J1J2J3/(4(J1 +

J2 + J3) − 1), which exactly coincides with P <
max in Eq.(48). Finally Eq.(89) makes P (L)

max to be

P (L)
max =

1
4

(
1 +

√
1 − 4(J2 + J3 + J4) +

√
1 − 4(J1 + J3 + J4) +

√
1 − 4(J1 + J2 + J4)

)
.

(91)
One can show that P (L)

max equals to P>
max in Eq.(46) when q = 0. This indicates that our results (90)

and (91) have correct limits to other types of three-qubit system.

6. Conclusion

We tried to compute the Groverian measure analytically in the various types of three-qubit system.
The types we considered in this paper are given in Ref.[20] for the classification of the three-qubit
system.

For type 1, type 2 and type 3 the Groverian measures are analytically computed. All results,
furthermore, can be represented in terms of LU-invariant quantities. This reflects the manifest LU-
invariance of the Groverian measure.
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For type 4 and type 5 we could not derive the analytical expressions of the measures because the
Lagrange multiplier equations (23) is highly difficult to solve. However, the consideration of LU-
invariants indicates that the Groverian measure in type 4 should be independent of the phase factor
ϕ. We expect that this fact may drastically simplify the calculational procedure for obtaining the
analytical results of the measure in type 4. The derivation in type 5 is most difficult problem. However,
it might be possible to get valuable insight from the geometric interpretation of Pmax, presented in
Ref.[23] and Ref.[24]. We would like to revisit type 4 and type 5 in the near future.

We think that the most important problem in the research of entanglement is to understand the
general properties of entanglement measures in arbitrary qubit systems. In order to explore this issue
we would like to extend, as a next step, our calculation to four-qubit states. In addition, the Groverian
measure for four-qubit pure state is related to that for two-qubit mixed state via purification[29].
Although general theory for entanglement is far from complete understanding at present stage, we
would like to go toward this direction in the future.
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Appendix A
One can easily show that the elements of O defined in Eq.(6) are given by

O11 =
1
2

(u11u
∗
22 + u∗11u22 + u12u

∗
21 + u∗12u21) (A.1)

O22 =
1
2

(u11u
∗
22 + u∗11u22 − u12u

∗
21 − u∗12u21)

O33 = |u11|2 − |u12|2

O12 =
i

2
(u12u

∗
21 + u11u

∗
22 − u∗12u21 − u∗11u22)

O21 =
i

2
(u12u

∗
21 + u∗11u22 − u∗12u21 − u11u

∗
22)

O13 = u11u
∗
12 + u∗11u12

O31 = u11u
∗
21 + u∗11u21

O23 = −i (u11u
∗
12 + u∗21u22)

O32 = i (u11u
∗
21 + u∗12u22)

where uij is element of the unitary matrix defined in Eq.(6). It is easy to prove OO T = OTO = �,
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which indicates that Oαβ is an element of O(3).

Appendix B
If the density matrix associated from the pure state |ψ〉 in Eq.(12) is represented by Bloch form like
Eq.(11), the explicit expressions for �vi are

�v1 =

⎛
⎝ 2λ0λ1 cosϕ

2λ0λ1 sinϕ
λ2

0 − λ2
1 − λ2

2 − λ2
3 − λ2

4

⎞
⎠ �v2 =

⎛
⎝ 2λ1λ3 cosϕ+ 2λ2λ4

−2λ1λ3 sinϕ
λ2

0 + λ2
1 + λ2

2 − λ2
3 − λ2

4

⎞
⎠ (B.1)

�v3 =

⎛
⎝ 2λ1λ2 cosϕ+ 2λ3λ4

−2λ1λ2 sinϕ
λ2

0 + λ2
1 − λ2

2 + λ2
3 − λ2

4

⎞
⎠

and the components of h(i) are

h
(1)
11 = 2λ2λ3 + 2λ1λ4 cosϕ, h

(1)
22 = 2λ2λ3 − 2λ1λ4 cosϕ (B.2)

h
(1)
33 = λ2

0 + λ2
1 − λ2

2 − λ2
3 + λ2

4, h
(1)
12 = h

(1)
21 = −2λ1λ4 sinϕ

h
(1)
13 = −2λ2λ4 + 2λ1λ3 cosϕ, h

(1)
31 = −2λ3λ4 + 2λ1λ2 cosϕ

h
(1)
23 = −2λ1λ3 sinϕ, h

(1)
32 = −2λ1λ2 sinϕ

h
(2)
11 = −h(2)

22 = 2λ0λ2, h
(2)
33 = λ2

0 − λ2
1 + λ2

2 − λ2
3 + λ2

4

h
(2)
12 = h

(2)
21 = 0, h

(2)
13 = 2λ0λ1 cosϕ

h
(2)
31 = −2λ3λ4 − 2λ1λ2 cosϕ, h

(2)
23 = 2λ0λ1 sinϕ

h
(2)
32 = 2λ1λ2 sinϕ.

The matrix h(3)
αβ is obtained from h

(2)
αβ by exchanging λ2 with λ3. The non-vanishing components of

gαβγ are

g111 = −g122 = −g212 = −g221 = 2λ0λ4 (B.3)

g113 = −g223 = 2λ0λ3, g131 = −g232 = 2λ0λ2

g133 = 2λ0λ1 cosϕ, g233 = 2λ0λ1 sinϕ

g312 = g321 = 2λ1λ4 sinϕ, g311 = −2λ2λ3 − 2λ1λ4 cosϕ

g313 = 2λ2λ4 − 2λ1λ3 cosϕ, g322 = −2λ2λ3 + 2λ1λ4 cosϕ

g323 = 2λ1λ3 sinϕ, g331 = 2λ3λ4 − 2λ1λ2 cosϕ

g332 = 2λ1λ2 sinϕ, g333 = λ2
0 − λ2

1 + λ2
2 + λ2

3 − λ2
4.


